Смекни!
smekni.com

Теоретические методы технологии машиностроения (стр. 2 из 8)

Рисунок 2. Цапфы под подшипники качения: а — цилиндрическая без крепления; б — с резьбой

Цапфы валов для подшипников качения (рис.2) характеризуются меньшей длиной, чем цапфы для подшипников скольжения. Исключение составляют конструкции с двумя подшипниками качения в опоре. Как правило, цапфы для подшипников качения выполняют цилиндрическими. В редких случаях применяют конические цапфы с малой конусностью — для регулирования зазоров в подшипниках упругим деформированием колец. Цапфы для подшипников качения нередко выполняют с резьбой или другими средствами для закрепления колец;

Посадочные поверхности под ступицы деталей, насаживаемых на вал, выполняют цилиндрическими или коническими. Основное применение имеют цилиндрические поверхности как более простые. Конические поверхности применяют: для облегчения постановки на вал и снятия с него тяжелых деталей, для обеспечения заданного натяга, для быстрой смены деталей типа сменных шестерен и для повышения точности центрирования деталей. В последнее время конические соединения с большим натягом получили широкое распространение.

Осевые нагрузки на валы от насаженных на них деталей передаются следующими способами:

1) тяжелые нагрузки — упором деталей в уступы на валу, посадкой деталей с натягом

2) средние нагрузки — гайками, штифтами

3) легкие нагрузки (и предохранение от перемещений случайными силами) — стопорными винтами, клеммовыми соединениями, пружинными кольцами

Сопротивление валов усталости определяется относительно малыми объемами металла в зонах значительной концентрации напряжений. Поэтому особо эффективны специальные конструктивные и технологические мероприятия по повышению выносливости валов.

Наблюдаемое резкое понижение сопротивления усталости валов в местах посадок в основном связано с концентрацией давления и фреттинг-коррозией, вызываемой местными проскальзываниями и кромочными давлениями. Конструктивные средства повышения выносливости показаны -

Наиболее эффективно утолщение вала на длине ступицы. Весьма эффективно также поверхностное упрочнение.

Упрочнением подступичных частей поверхностным наклепом (обкаткой роликами или шариками) можно повысить предел выносливости валов с концентрацией напряжений на 80... 100 %, причем этот эффект распространяется на валы диаметром 500—600 мм и более. Такое упрочнение получило в настоящее время широкое распространение.

Прочность валов в местах шпоночных, шлицевых и других разъемных соединений со ступицей может быть повышена применением: эвольвентных шлицевых соединений; шлицевых соединений с внутренним диаметром, равным диаметру вала на соседних участках, или с плавным выходом шлицев на поверхность, обеспечивающим минимум концентрации напряжений изгиба; шпоночных канавок, изготовляемых дисковой фрезой и имеющих плавный выход на поверхность; бесшпоночных соединений.

Переходные участки валов между двумя ступенями разных диаметров выполняют следующих типов.

1. С канавкой для выхода шлифовальных кругов Канавки обычно выполняют на валах диаметром 10...50 мм шириной 3 мм и глубиной 0,25 мм, а на валах диаметром 50... 100 мм — шириной 5 мм и глубиной 0,5 мм. Канавки должны иметь максимально возможные радиусы закруглений. Канавки существенно повышают стойкость шлифовальных кругов при обработке. Однако они вызывают. значительную концентрацию напряжений и понижают прочность валов при переменных напряжениях.

Канавки выполняют в валах, диаметры которых определяются условиями жесткости (в частности, валах коробок передач), и на концевых участках валов, на которых изгибающие моменты невелики. Канавки также нужны на концах участков с резьбой для выхода резьбонарезного инструмента.

2. С переходной поверхностью — галтелью постоянного радиуса Радиус выбирают меньше радиуса закругления или радиального размера фаски насаживаемых деталей.

3. С переходной поверхностью—галтелью специальной формы. Опасной зоной обычно является переход галтели в ступень меньшего диаметра; поэтому в заданных габаритах целесообразно делать галтель переменного радиуса кривизны с увеличением радиуса в зоне перехода к ступени меньшего диаметра. Применяют галтели эллиптической формы и чаще галтели, очерчиваемые двумя радиусами кривизны. Переменность радиуса кривизны галтели повышает несущую способность вала на 10 %. Галтели с поднутрением увеличивают длину базирования ступиц. Однако полировать галтели с поднутрением трудно.

Подбором галтели оптимальной формы на длине 0,75... 1 диаметра вала (рис. можно практически избавиться от концентрации напряжений. Однако не использовать такие формы можно в редких случаях, например в торсионных валах (т. е. валах, служащих пружиной, работающей на кручение), на свободных участках сильнонапряженных валов и т. д.

Повышение прочности валов в переходных сечениях достигается также удалением малонапряженного материала: выполнением разгрузочных канавок и высверливанием отверстий в ступенях большого диаметра Эти мероприятия обеспечивают более равномерное распределение напряжений и снижают концентрацию напряжений.

Пластическим упрочнением галтели (обкаткой роликами, а при больших диаметрах.

Материалы и обработка валов и осей

Выбор материала и термической обработки валов и осей определяется критериями их работоспособности, в том числе критериями работоспособности цапф с опорами. Значимость последних критериев в случае опор скольжения может быть определяющей.

Основными материалами для валов и осей служат углеродистые и легированные стали благодаря высоким механическим характеристикам, способности к упрочнению и легкости получения цилиндрических заготовок прокаткой.

Для большинства валов применяют термически обрабатываемые среднеугле-родистые и легированные стали 45, 40Х. Для высоконапряженных валов ответственных машин применяют легированные стали: 40ХН, 40ХН2МА, ЗОХГТ, ЗОХГСА и др. Валы из этих сталей обычно подвергают улучшению, закалке с высоким отпуском или поверхностной закалке с нагревом ТВЧ и низким отпуском (шлицевые валы).

Быстроходные валы, вращающиеся в подшипниках скольжения, требуют весьма высокой твердости цапф; их изготовляют из цементуемых сталей 20Х, 12ХНЗА, 18ХГТ или азотируемых сталей типа 38Х2МЮА. Высокую износостойкость имеют хромированные валы. По опыту автомобилестроения хромирование шеек коленчатых валов увеличивает ресурс до перешлифовки в 3...5 раз.

Для валов, размеры которых определяются условиями жесткости, прочные, термически обработанные стали целесообразно применять только тогда, когда это определяется требованиями долговечности цапф, шлицев и других изнашиваемых поверхностей. Валы больших диаметров изготовляют из труб с приварными или насадными фланцами или сварными из листов также с приварными фланцами. Применение сварных валов мощных гидротурбин приводит к экономии 20...40 % металла.

Для изготовления фасонных валов — коленчатых, с большими фланцами и отверстиями — и тяжелых валов наряду со сталью применяют высокопрочные чугуны (с шаровидным графитом) и модифицированные чугуны. Меньшая прочность чугунных валов в значительной степени компенсируется более совершенными формами валов (особенно коленчатых), меньшей чувствительностью в многоопорных валах к смещению опор (благодаря меньшему модулю упругости) и меньшей динамической нагрузкой ввиду повышенной демпфирующей способности.

В качестве заготовок для стальных валов диаметром до 150 мм обычно используют круглый прокат, для валов большего диаметра и фасонных валов — поковки.

Валы подвергают токарной обработке и последующему шлифованию посадочных поверхностей. Высоконапряженные валы шлифуют по всей поверхности. Торцы валов для облегчения насадки деталей, во избежание обмятий и повреждения рук рабочих выполняют с фаской

1.2 материал детали и его свойства

Характеристика материала 35

Марка : 35
Заменитель: 30, 40, 35г
Классификация : Сталь конструкционная углеродистая качественная
Применение: детали невысокой прочности, испытывающие небольшие напряжения: оси, цилиндры, коленчатые валы, шатуны, шпиндели, звездочки, тяги, обода, траверсы, валы, бандажи, диски и другие детали.

Химический состав в % материала 35 .

C Si Mn Ni S P Cr Cu As
0.32 - 0.4 0.17 - 0.37 0.5 - 0.8 до 0.25 до 0.04 до 0.035 до 0.25 до 0.25 до 0.08

Температура критических точек материала 35.

Ac1 = 730 , Ac3(Acm) = 810 , Ar3(Arcm) = 796 , Ar1 = 680 , Mn = 360

Механические свойства при Т=20oС материала 35 .

Сортамент Размер Напр. sв sT d5 y KCU Термообр.
- мм - МПа МПа % % кДж / м2 -
Поковки до 100 470 245 22 48 490 Нормализация
Поковки 100 - 300 470 245 19 42 390 Нормализация
Поковки 300 - 500 470 245 17 35 340 Нормализация

Твердость материала 35 горячекатанного отожженного HB = 163
Твердость материала 35 после отжига HB = 207

Физические свойства материала 35 .

T E 10- 5 a 10 6 l r C R 10 9
Град МПа 1/Град Вт/(м·град) кг/м3 Дж/(кг·град) Ом·м
20 2.06 7826
100 1.97 12 49 7804 469 251
200 1.87 12.9 49 7771 490 321
300 1.56 13.6 47 7737 511 408
400 1.68 14.2 44 7700 532 511
500 14.6 41 7662 553 629
600 15 38 7623 578 759
700 15.2 35 7583 611 922
800 12.7 29 7600 708 1112
900 13.9 28 7549 699 1156
T E 10- 5 a 10 6 l r C R 10 9

Технологические свойства материала 35 .