Смекни!
smekni.com

Технологии машиностроения (стр. 11 из 15)

•Δн ― погрешность настройки, представляющая собой разность возможных предельных положений режущего инструмента на станке при его настройке на выполняемый размер. Предельная величина Δн зависит от метода настройки. Для каждой последующей настройки (или поднастройки) станка действенное значение Δн случайно и отличается от предыдущего. В справочнике [10] приводятся методика, расчетные зависимости и таблицы со значениями параметров, необходимые для расчетов величины Δн на практике. При обработке всей партии заготовок с одной настройки станка погрешность Δн из расчетов можно исключить [9];

― погрешность установки, случайная величина, складывающаяся из погрешностей базирования
, закрепления
и положения заготовки в приспособлении или на станке
. Погрешность базирования для различных схем определяют по формулам [10, 2.3 и др.].При совпадении технологических (установочных) баз с измерительными она отсутствует. Погрешность
определяется величиной смещения проекции измерительной базы на направление выполняемого размера в процессе закрепления заготовки. При постоянных силе зажима и условиях контакта баз заготовок с опорами величину
можно из расчета исключить. Обычно принимают
≤ 0,01―0,015. Как и другие составляющие значение
считают случайной величиной и суммируют с
и
по правилу сложения векторов;

•Δи ― погрешность, связанная о износом режущего инструмента. Погрешность обусловлена систематическим изменением положения режущей кромки относительно технологической базы заготовки. Нормальный износ протекает пропорционально времени обработки или пути резания. Его интенсивность зависит от свойств обрабатываемого материала и материала инструментов, метода обработки, режима и условий резания, конструкции инструмента и других факторов; характеризуется величиной относительного износа U0, мкм/км. Для наиболее распространенных случаев зависимости для расчета Δи и значения Uoприводятся в [8, 9, 10, 30] . Величину Δи сокращают посредством своевременной ручной или автоматической поднастройки станка, использованием более износостойких режущих материалов, конструированием широких режущих кромок, позволяющих увеличить подачу (например, при строгании) и тем самым сократить путь резания, выбором рациональных режимов резания и СОЖ и др.;

•Δт ― погрешность, обусловленная температурными деформациями оборудования, инструмента и обрабатываемых заготовок. С началом работы технологическая система разогревается, при этом удлиняются режущие кромки инструментов, увеличиваются в размерах заготовки, изменяют первоначальное положение оси шпинделей и т.д. Вследствие первоначального нагрева отдельных частей происходит раскоординация системы, нарушающая настройку станка и приводящая к изменению технологических размеров. После разогрева и наступления в системе теплового равновесия указанные процессы прекращаются. Повторной поднастройкой системы в разогретом состоянии удается величину Δт свести к минимуму. Этим же целям способствует организация обработки с ритмичными перерывами машинного времени, обильное охлаждение зоны резания и др.[8, 9, 10, 30];

•Δф ― погрешность формы и.размеров обрабатываемых поверхностей, возникающая вследствие погрешностей изготовления и сборки станков, износа и деформации их составных частей (например, станин при длительной эксплуатации и оседании фундаментов и пр.). Допустимые погрешности изготовления различных типов станков (осевое и радиальное биение шпинделей, неперпендикулярность или не параллельность их осей станинам, столам или поверхностям других узлов и т.п.) лимитированы и приводятся в [8, 10, 25, 30], а также в соответствующих стандартах на приемку станков. Этими сведениями следует воспользоваться, предварительно проанализировав влияние допустимых погрешностей на точность обработки в проектируемой операции. В отличие от других, погрешность Δф при выполнении конкретной технологической операции имеет определенную величину, постоянную для всех деталей партии. Кроме перечисленных в процессе механической обработки заготовок могут возникнуть погрешности, связанные с перераспределением внутренних напряжений в заготовке или недостаточной жесткостью заготовок, возникающие из-за кинематической неточности станка, присущие принятой схеме (или методу) обработки поверхности и пр.

На практике весьма важно уметь определить величину и правильно оценить степень влияния каждой начальной погрешности (с учетом возможностей их взаимной компенсации) на точность изготавливаемой детали.

Методика расчета суммарной погрешности обработки Δ изложена в [8, 9, 10, 15, 30] и другой литературе, где одновременно приводятся таблицы или формулы для определения численных значений всех начальных погрешностей. Точность обработки считается достаточной, если технологический допуск на выполняемый размер Тd≥ Δ и погрешности формы и расположения поверхностей укладываются в допустимые пределы.

Зная условия обработки (оборудование, инструмент, режим резания, схему закрепления, действующие силы и прочее), студенту следует первоначально тщательно проанализировать и обосновать, какие из начальных погрешностей влияют на точность выполнения операции, а затем определить суммарную погрешность размеров на выполняемых операциях и сравнить результат с допуском.

В случае, если Δ > Тd. необходимо, варьируя факторами, определяющими условия обработки, добиться необходимой точности.

Следует помнить, что проектировать технологический процесс операции, не обеспечивающий заданной точности и других технических требований, бессмысленно.

Подраздел может быть изложен на 2―3 с., при этом должны делаться ссылки на ранее составленные эскизы и схемы обработки, а также на первоисточники.

Пример 11. Проверить, обеспечивается ли точность размера 27,42-0,12 при подрезке торца 2 (см. рис.4 и 6) на операции 05. Условия обработки соответствуют рассмотренным в примерах 6 и 8.

Условие обработки без брака ― Δ ≤ Тd(Тd = 0,12 ― допуск на выполняемый размер).

Суммарная погрешность обработки, мкм

,
где Δу ― погрешность, связанная с деформациями системы СПИД, мкм. Для принятой схемы обработки Δу возникает из-за взаимных отжатий резцов с суппортом и заготовки. По [10, с.30, табл.11] жесткость в этом направлении для станков типа 1K282 J = 900/50 = 196 Н/мкм. При суммарной составляющей сил резания Рy= 1262,4 Н (см. с. 40).

Δу = Рy/J = 1262,4/196 = 6,4 мкм;

Δн ― погрешность настройки станка на размер, мкм. Для обработки плоских поверхностей [10, c.70].

Коэффициенты Кр = 1,2 и Kи = 1 учитывают отклонения закона распределения элементарных величин Δр и Δи от нормального; Δр ― погрешность регулирования. При настройке станка по эталону с контролем металлическим щупом, по [10, с. 71, табл.26] Δp = 10 мкм; Δи ― погрешность измерения, по [10, с. 72, табл,27] для размеров до 50 мм и при возможной точности станка в пределах 10 ― Δи = 20 мкм.

В таком случае

мкм;

― погрешность установки. Для принятой схемы обработки технологические базы заготовки совпадают с измерительными, а силы зажима направлены перпендикулярно выдерживаемому размеру. По этой причине
отсутствует;

Δи ― погрешность обработки, вызываемая размерным износом инструмента Δи = 2UоL/1000, мкм [10, с.73]. В этом выражении L ― длина резания, м; Uo ― относительный износ резцов, мкм/км. При точении партии деталей n= 200 шт, со скоростью V = 130 м/мин и времени обработки каждой заготовки t0 = 0,37 мин (см. табл.7).

L = n·V·t0 = 200·130·0.37 = 9620 м,

а величина U0 = 3 мкм/км [10, с. 74, табл.28].

Тогда

Δи = 2·3·9620/1000 = 58 мкм;

Δт ― погрешность, связанная с температурными деформациями системы СПИД, мкм. Величина Δт зависит от режима работы станка и длительности процесса резания. За время операционного цикла при отношении t0/ tш = 0,37/0,88 = 0,42 резец и заготовка не успевают разогреваться на столько, чтобы существенно изменить свои размеры. Поэтому примем Δт = 0;

Δф ― погрешность, связанная с геометрическими неточностями станков, мкм. Значение Δф рассчитывают по формулам, определяют по таблицам или принимают Δф ≤ 0,7 от соответствующих величин по ГОСТам на нормы точности [10, c. 53]. Для вертикальных многошпиндельных токарных полуавтоматов согласно ГОСТ 6820―75 погрешности подрезки торцов у партии заготовок не нормируются [10, c. 56, табл. 23].

Таким образом, суммарная погрешность