Смекни!
smekni.com

Расчет привода с трехступенчатым редуктором (стр. 4 из 5)

К1К2К3крраб.

где К1 - коэффициент учитывающий степень ответственности механизма, К1=1;

К2 - коэффициент учитывающий условия работыК2 =1,0

К3 – коэффициент углового смещения К3=1,0

Мкр – наибольший крутящий момент передаваемый муфтой (250Нм)

Мраб – наибольший длительно действующий на соединяемых валах крутящий момент (162Нм)

В итоге получаем:

1,0<1,5

Условие прочности выполнено.

10 Выбор подшипников на выходном вал

10.1 Предварительный выбор подшипников качения

Т.к передача является цилиндрической прямозубой то вследствие незначительных осевых нагрузок выбираем радиальные роликовые подшипники с короткими цилиндрическими роликами.

Типоразмер подшипников выбираем по диаметру вала под подшипники.

В данном случае подходит подшипник 12211 ГОСТ28428-90, со следующим основными параметрами:

- размеры (см, рис 10.1)

d=105мм, D=160мм, В=36мм,

- грузоподъёмность:

Cr=468кН,

Сор=310кН,

10.1 Проверочный расчет подшипников

Пригодность подшипников определяется сопоставлением расчетной динамической Сrp, с базовой Cr, или базовой долговечности L10h, с требуемой Lh.

Сrp < Cr; L10h≥ Lh

Расчетная динамическая грузоподъёмность и базовая долговечность определяются по формулам:

, Н

где Re – эквивалентная динамическая нагрузка, Н

ω – угловая скорость соответствующего вала;

m –показатель степень: для роликовых подшипников m=3.33.

Определяем эквивалентную динамическую нагрузку:

Re=VRrKбКт;

где V – коэффициент вращения, при вращающемся внутреннем кольце V=1;

Кб – коэффициент безопасности, Кб=1,7;

Кт – температурный коэффициент, Кт=1;

Rr – суммарная реакция подшипника ( выбираем более нагруженный)

Re=1∙56700∙1.7∙1=96390Н

В результате подставляя полученные данные в формулы получим:

В итоге получается, что предварительно выбранные подшипники пригодны для конструирования подшипниковых узлов.

11. Определение размеров корпуса редуктора и необходимых конструктивных размеров шестерни выходного вала

11.1 Определение размеров корпуса редуктора

Корпус редуктора служит для размещения и координации деталей передачи, защиты их от загрязнения, организации системы смазки, и также воспринятая сил, возникающих в зацеплении редукторной пары, подшипниках, открытой передачи. Наиболее распостранёный способ изготовления корпусов - литьё из серого чугуна (например СЧ 15).

- толщина стенки корпуса:

-конструктивные элементы фланца

В корпусах проектируемых редукторов проектируют 5 фланцев:

1-фундаментный

2 -подшипниковой бобышки

3- соединительный

4- крышки подшипникового узла

5-крышки смотрового люка

Конструктивные элементы фланца определяются в зависимости от диаметра соответствующего крепежного винта (болта), который выбирается в зависимости от главного геометрического параметра редуктора (аw(dв2)), в данном случае:

-d1=M16

-d2=M14

-d3=M12

-d4=M12

-d5=M6

Отсюда определяем такие параметры фланцев, как ширина К, координата отверстии под болт С, диаметр и высота опорной поверхности под болт D0, b0, диаметр отверстия под винт d0. Полученные данные сведём в таблицу.

d1 d2 d3 d4 d5
Ширина, К 35 31 26 26 13
Координата оси отверстия под винт, С 18 16 13 13 16
Диаметр опорнойповерхности подголовку винта, D0 26 24 20 20 11
Высота опорнойповерхности подголовку винта, bc 21 18 16 16 8
Диаметр отверстияпод винт, d0 18 16 14 14 7

а) Фундаментный фланец основания корпуса.

Предназначен для крепления редуктора к фундаментной раме (плите). Опорная поверхность фланца выполняется в виде двух длинных параллельно расположенных или четырех небольших платиков. Места крепления располагают на возможно большем (но в пределах корпуса) расстоянии друг от друга L1. Длина опорной поверхности платиков L=L1+b1; ширина b1=2.4d01+1.5δ; высота h1=(2.3...2,4)δ. Проектируемые редукторы кренятся к раме (плите) четырьмя болтами (шпильками), расположенными в нишах корпуса. Размеры ниш высота ниш h01 =(2.0...2,5)d1 при креплении шпильками.

h01=2,5(d1+δ) - болтами. Форма ниши (угловая или боковая) определяется размерами, формой корпуса и расположением мест крепления.

В результате получаем:

L1=920мм

L=920+35=955

b1=2.4∙18+1.5∙10=58.2мм

h1=(2.3...2,4)10=24мм

h01=2,5(16+10)=65мм

б) Фланец подшипниковой бобышки крышки и основания корпуса. Предназначен для соединения крышкии основания разъемных корпусов. Фланец расположен в месте установки стяжных подшипниковых болтов (винтов) на продольных длинных сторонах корпуса.

Подшипниковые стяжные винты ставят ближе к отверстию под подшипник на расстоянии L2 друг от друга так чтобы расстояние между стенками отверстий диаметром d02 и d4(при установке горновой крышки подшипникового узла было не менее 3...5 мм, при установке врезной крышки это расстояние выдерживается между стенками отверстия диаметром d02 и отверстия диаметром D0 под выступ крышки. Высота фланца h2 определяется графически исходя из условий размещения головки винта на плоской опорной поверхности подшипниковой бобышки. В цилиндрическом горизонтальном редукторе винт расположенный между отверстиями под подшипники, помещают посередине между этими отверстиями. При этом наружные торцы подшипниковых бобышек, расположенные на внешних боковых стенках редуктора, для удобства обработки выполняют в одной плоскости.

в) Соединительный фланец крышки и основания корпуса.

Для соединения крышки корпуса с основанием по всему контуру разъема выполняют соединительный фланец. На коротких боковых сторонах крышки и основания корпуса, не соединенных винтами, фланец расположен внутрь корпуса и его ширина К3 определяется от наружной стенки; на продольных длинных сторонах, соединенных винтами d3 фланец располагается: в крышке корпуса наружу от стенки, в основании - внутрь.

Количество соединительных винтов n3 и расстояние между ними L3 принимают по конструктивным соображениям в зависимости от размеров продольной стороны редуктора и размещения подшипниковых стяжных винтов. При сравнительно небольшой длине продольной стороны можно принять d3=d2 и h3 = h2 и поставить один-два соединительных вита. При длинных продольных сторонах принимают h3 = 1.5δ=1.5∙10=15мм для болтов. А количество болтов n и расстояние между ними L3 определяют конструктивно.

г) Фланец для крышки подшипникового узла. Отверстие подшипникового узла неразъёмной подшипниковой бобышки закрывается торцовой крышкой на винтах. Параметры присоединительного фланца крышки подшипникового узла

d4=M12

n4=8

д) Размеры фланца смотрового люка определяются конструктивно.

11.2 Конструктивные размеры шестерни выходного вала

Определим геометрические параметры шестерни

Диаметр обода dа=218мм

Толщина обода S=2.2m+0.05b2=2.2∙7+0.05∙100=20.4

Ширина обода b2=100мм

Внутренний диаметр ступицы d=115мм

Диаметр наружный ступицы d=1.3d=1.3∙115=150мм

Длина ступицы l=1.2d=1.2∙115=140мм

Толщина диска С=0.5(S+δ)= 0.5(20.4+17.5)=20мм

Радиусы скруглений R≥6мм

12 Выбор смазки редуктора

Для уменьшения потерь мощности на трение и снижения интенсивности износа трущихся поверхностей, а также для предохранения их от заедания, задиров, коррозии и лучшего отвода теплоты трущиеся поверхности деталей должны иметь надежную смазку.

В настоящее время в машиностроении для смазывания передач широко применяют картерную систему. В корпус редуктора или коробки передач заливают масло так, чтобы венцы колес были в него погружены. При их вращении масло увлекается зубьями, разбрызгивается, попадает на внутренние стенки корпуса, откуда стекает в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которая покрывает поверхность расположенных внутри корпуса деталей.

Картерную смазку применяют при окружной скорости зубчатых колес и червяков от 0,3 до 12,5 м/с. При более высоких скоростях масло сбрасывается с зубьев центробежной силой и зацепление работает при недостаточной смазке. Кроме того, заметно увеличиваются потери мощности на перемешивание масла, и повышается его температура.

Выбор смазочного материала основан на опыте эксплуатации машин. Принцип назначения сорта масла следующий: чем выше окружная скорость колеса, тем меньше должна быть вязкость масла, чем выше контактные давления в зубьях, тем большей вязкостью должно обладать масло. Поэтому требуемую вязкость масла определяют в зависимости от контактного напряжения и окружной скорости колес. Предварительно определяют окружную скорость, затем по скорости и контактным напряжениям находят требуемую кинематическую вязкость и марку масла.

Т.к. контактные напряжения в зубчатых передачах редуктора состовляют до 659МПа, а окружные скорости зубчатых колес до 4.5м/с то целесообразно выбирать смазку Ц-Г-С-68