Смекни!
smekni.com

Разработка системы автоматического управления положением объекта (стр. 1 из 8)

КУРСОВАЯ РАБОТА

"Разработка системы автоматического управления положением объекта"

Пенза, 2010


Введение

Автоматическое управление различными техническими объектами является одним из самых прогрессивных направлений в развитии техники. При автоматическом регулировании задача поддержания постоянства регулируемой величины или изменения её по какому-либо закону должна выполняться без непосредственного участия человека. Устройство, освобождающее человека от выполнения функций регулирования, называемое регулятором в совокупности с объектом управления называется системой автоматического управления (САУ). Все САУ по принципу действия можно разделить на 3 группы: разомкнутые системы (регулирующее воздействие определяется лишь информацией о цели управления, которая заключена в задающем воздействии), САУ, действующие по принципу регулирования по отклонению (регулирующее воздействие определяется не только информацией о цели управления, заключенной в задающем воздействии, но и на основе информации о результатах регулирования), системы, сочетающие принцип регулирования по отклонению и по возмущению (регулирующее воздействие определяется информацией о цели управления, заключенной в задающем воздействии, действительным значением регулируемой величины и информацией о возмущающем воздействии).

САУ, действующие по принципу регулирования по отклонению, являются в настоящее время самым распространённым классом автоматических систем. Такие системы находят широкое применение для автоматического регулирования различных физических величин в объектах, относящихся к различным отраслям техники (регулирование напряжения и частоты источников питания, давления и температуры в герметичной камере, курса и высоты полёта самолёта). В данной работе разрабатывается следящая система, которая также действует по принципу регулирования по отклонению, что существенно повышает точность ее регулирования.

Разработка системы будет проходит в несколько этапов:

– первая часть курсового проекта будет посвящена выбору и расчету основных элементов нестабилизированной системы,

– вторая часть анализу устойчивости системы и синтезу корректирующего устройства, обеспечивающего требуемые качественные показатели,

– последняя часть разработке и описанию схемы электрической принципиальной.

нестабилизированный система управление корректирующий


1. Статический расчет системы

1.1 Составление функциональной схемы системы

Из данных технического задания видно, что объект управления вращается с угловой скоростью

и угловым ускорением
, следовательно, для приведения его во вращение необходим исполнительный элемент, который будет передавать вращающий момент к объекту управления. В качестве исполнительных элементов в системах автоматического управления, как правило, применяются электродвигатели постоянного и переменного тока.

Электродвигатель будет передавать вращающий момент к объекту управления через редуктор. Для определения сигнала рассогласования необходимо включить в схему элемент сравнения, а для усиления сигнала рассогласования до величины, обеспечивающей нормальную работу электродвигателя, необходимо включить в схему усилительно-преобразовательный элемент. Таким образом, предварительная функциональная схема следящей системы может быть представлена, как показано на рисунке 1.

Рисунок 1

ЭС – элемент сравнения;

УПЭ – усилительно-преобразовательный элемент;

ЭД – электродвигатель;

РЕД – понижающий редуктор;

ОУ – объект управления;

X – задающее (управляющее) воздействие;

XОС – сигнал обратной связи;

XС – сигнал рассогласования;

XР – регулирующее воздействие;

Область, обведенная пунктиром на рисунке 1 – является управляющей частью системы (регулятором);

Y – регулируемая величина.

1.2 Выбор основных элементов системы

1.2.1 Выбор исполнительного электродвигателя

В большинстве автоматических систем управление потоками сырья и энергии осуществляется с помощью регулирующих органов, приводимых в движение электродвигателями постоянного и переменного тока. Выбор электродвигателя определяется мощностью, необходимой для перемещения регулирующего органа или объекта управления, а также перечнем разрешенных источников питания.

В общем случае механическая нагрузка на оси регулирующего органа (оси нагрузки) характеризуется моментом трения

, моментом инерции
, частотой вращения
, угловым ускорением
. Обычно вал двигателя соединяется с нагрузкой через понижающий редуктор с передаточным числом
, тогда требуемая мощность электродвигателя для перемещения объекта управления рассчитаем:

(1)

где

– КПД редуктора из диапазона (0,7.. 0,9).

По справочным данным, помещенным в /1/, выбираем двигатель постоянного тока с параллельным возбуждением СЛ-521 мощностью 77 Вт, технические данные которого приведены в таблице 1.

Таблица 1

Мощность на валу, Вт 77
Напряжение, В 110
Ток якоря, А 1,2
Ток обмотки возбуждения, А 0,13
Вращающий момент, Нм 2450∙10-4
Пусковой момент, Н∙м 0,65
Номинальная частота вращения,
314
Момент инерции, кг∙м2 16,7∙10-5
Сопротивление обмотки якоря, Ом 8,5
Сопротивление обмотки возбуждения, Ом 820
Статический момент трения, Н∙м 343,35∙10-4
Индуктивность обмотки якоря, Гн 58∙10-3

Так как двигатель маломощный, то момент инерции двигателя совместно с редуктором возьмем равным

Пусковой ток якоря связан с его номинальным током соотношением

Приняв

, определим сопротивление в цепи якоря

Ом

Добавочное сопротивление в цепи якоря определяется следующим образом

Ом

Передаточное число редуктора определим по формуле

Выберем число пар зацеплений редуктора. Так как

, что больше 3, но меньше 10, то примем
. Пользуясь номограммой (рисунок 2) для определения передаточного числа каждой пары, находим

Рисунок 2


Схема редуктора представлена на рисунке 3:

Рисунок 3

Подсчитаем коэффициенты

и
,

где

– конструктивная постоянная вращающего момента двигателя,

– конструктивная постоянная противоэдс якоря.

Конструктивная постоянная

может быть вычислена по номинальным паспортным данным двигателя:

Коэффициент

в зависимости от выбора единицы измерения вращающего момента и частоты вращения, связан с коэффициентом
. В частности в системе СИ они равны.

Номинальный момент двигателя


Пусковой момент двигателя

Для проверки двигателя по вращающему моменту определим