Смекни!
smekni.com

Расчет аппарата воздушного охлаждения Последовательность расчета (стр. 6 из 6)

; (110)

; (111)

1/МН;

для плоских приварных фланцев:

.

;

[4, с.147] для стали 35Х;

Болтовая нагрузка в рабочих условиях:

; (112)

;

Приведенные изгибающие моменты в диаметральном направлении сечения фланца:

; (113)

; (114)

; (115)

;

;

;

Условия прочности болтов:

; (116)

; (117)

;
;

;
.

Условия прочности болтов выполняются.

Условие прочности прокладки:

q =

; (118)

МПа;
.

Условие прочности прокладки выполняется.

Максимальное напряжение в сечении s1 = βsо фланца:

; (119)

[5, с.268] – коэффициент;

.

Максимальное напряжение в сечении s0 фланца:

; (120)

где

- принимаем согласно [5, с.269];

.

Напряжение в кольце фланца от действия момента М0:

; (121)

.

Напряжения во втулке фланца от внутреннего давления:

- тангенциальное:

; (122)

- меридиональное:

; (123)

;

.

Условие прочности фланца:

- в сечении sо

; (124)

при

:

; (125)

;

φ – коэффициент прочности сварного шва, принимаем φ = 1;

;

.

- в сечении s1

; (126)

;

Условия прочности фланца выполняется.

Угол поворота фланца:

; (127)

для плоских фланцев

[5, с.272];

. (128)

Условие герметичности фланцевого соединения выполняется.


5. Энергетический расчет

Требуемая мощность двигателя:

, (129)

где ηп = 0,95 – КПД привода;

ηдв = 0,95 – КПД двигателя:

Принимается двигатель для аппаратов, работающих в невзрывоопасных зонах АО 93-12. Характеристика двигателя:

- число полюсов – 12;

- номинальная мощность – 18 кВт;

- скорость вращения – 480 об/мин.

Суммарная мощность, потребляемая двумя электродвигателями аппарата:

Nобщ = 2Nдв (130)

Nобщ = 2. 13 = 26 кВт


6 Кинематический расчет

Разработанная кинематическая схема приведена на рисунке 6.

Рисунок 6

1 – аппарат воздушного охлаждения; 2 – конический редуктор-опора; 3 – электродвигатель; 4 – муфта

Для привода АВГ выбираем стандартный редуктор-опору [4, с. 45], основные размеры которого приведены на рисунке 7.

Передаточное отношение для аппарата АВГ составляет 2,27 [4, с. 44], скорость вращения входного вала n1 = 480 с-1, тогда скорость вращения выходного вала и вентилятора:

n2 = n1/ i, (131)

где i = 2,27 – передаточное отношение,

n2 = 480/ 2,27=211,45 с-1


Рисунок 7

1 – вал; 2 – шарикоподшипник; 3 – корпус; 4 – шестерня коническая ведущая; 5 – колесо коническое ведомое; 6 – радиально-упорный роликоподшипник

Заключение

По результатам расчета выбираем аппарат воздушного охлаждения

:

аппарат воздушного охлаждения с горизонтальным расположением секций, коэффициент оребрения – 14,6, аппарат имеет жалюзи, условное давление 0,6 МПа, материальное исполнение Б4 – биметаллические трубы, исполнение электродвигателя - невзрывозащищенное, индекс электродвигателя по мощности – 1, климатическое исполнение – для умеренного климата с температурным диапазоном от – 20 до +45, количество рядов труб – 4, число ходов по трубам – 2, длина трубы – 8 м.

Данный аппарат отличаются относительной простотой конструкции, следовательно, достаточно прост при монтаже и эксплуатации. Установка не приводит к загрязнению окружающей среды и занимает небольшую площадь, по сравнению с общей площадью занимаемой обычным теплообменником и сооружениями водного хозяйства.

У аппаратов типа АВГ наименьшее аэродинамическое сопротивление теплообменных секций, следовательно требуется меньшая мощность вентилятора. В зимнее время при уменьшении угла поворота лопастей потребление электроэнергии значительно снижается, также при низких температурах возможно отключение одного вентилятора, что также уменьшает затраты на электроэнергию.

Общий вид аппарата воздушного охлаждения изображен на чертеже КП.ДПИ–260601(06МАПП)–АВО-5–00.00.000 В0.

Список литературы

1. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курс процессов и аппаратов.Л.:Химия,1987, 576 с.

2. Ульянов В.М. Физико-химические характеристики веществ. Справочник проектировщика химического оборудования: учебное справочное пособие /В.М Ульянов. – Н.Новгород: НГТУ, 2009. – 309 с.

3. Справочник химика/ Б.П. Никольский, О.Н. Григоров, М.Е. Позин и др. – Л.: Химия, 1966. – 1072 с.

4. Сидягин А.А., Расчет и проектирование аппаратов воздушного охлаждения: учеб. пособие/ А.А. Сидягин, В.М. Косырев. – Н.Новгород: НГТУ, 2009. – 150 с.

5. Лащинский А.А. Конструирование сварных химических аппаратов: справочник/ А.А. Лащинский, 1981. – 382с.

6. РД 26-15-88. Сосуды и аппараты. Нормы и методы расчета на прочность и герметичность фланцевых соединений.

7. ГОСТ 25822-83. Сосуды и аппараты. Аппараты воздушного охлаждения. Нормы и методы расчета на прочность.

8. ГОСТ Р 51364-99. Аппараты воздушного охлаждения. Общие технические условия.