Смекни!
smekni.com

Технологические возможности горизонтально-расточного станка 2654 (стр. 1 из 4)

ВВЕДЕНИЕ

В эпоху научно-технической революции технический прогресс прежде всего связан с машиностроением, созданием новых, более совершенных и более производительных машин, механизмов и агрегатов, разработкой комплексов и систем, объединяющих в единое целое разнообразные машины и технические устройства.

Количественное и качественное развитие машиностроения в значительной степени зависит от станкостроения. Без развития станкостроения нельзя добиться широкого спектра развития производства, выпуска деталей, непрерывного технического прогресса, роста производительности труда.

Основными направлениями экономического и социального развития на 1986—1990 годы и на период до 2000 года в станкостроительной промышленности предусмотрено обеспечить опережающий выпуск металлорежущих станков с числовым программным управлением, станков типа «обрабатывающий центр», тяжелых и уникальных станков и прессов, оборудования для автоматизации сборки массовых изделий в машиностроении, роторных, роторно-конвейерных и других автоматических линий для машиностроения и металлообработки.

Всевозрастающие темпы роста продукции машиностроения и металлообработки обеспечиваются огромным станочным парком страны, который систематически пополняется новыми металлорежущими станками, среди которых большое место занимают универсальные и специальные расточные станки.

Расточные и другие работы, выполняемые на расточных станках, занимают особенно большое место в условиях единичной и мелкосерийной обработки корпусных деталей. Заготовки корпусных деталей, обрабатываемые на расточных станках, обычно имеют литую или сварную конструкцию и стоят очень дорого из-за сложности формы, трудности механической обработки, значительной массы и габаритных размеров.

На расточных станках выполняется большое количество операций механической обработки с применением режущих, измерительных и вспомогательных инструментов, принадлежностей и приспособлений. Этими обстоятельствами определяются высокие требования, предъявляемые к рабочему-станочнику в отношении его теоретической подготовки и производственных навыков.

Целью моего курсового проекта является изучить горизонтально-расточной станок 2654 и произвести расчет коробки скоростей.


1 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

1.1 Технологические возможности станка

Универсальный горизонтально-расточной станок 2654 предназначен для индивидуальной или серийной обработки тяжелых корпусных деталей большого габарита, имеющих точные отверстия, связанные между собой точными расстояниями.

На станках может производиться: сверление, растачивание, зенкерование, развертывание отверстий, обтачивание торцов радиальным суппортом, фрезерование торцевыми фрезами и нарезание резьбы расточным шпинделем. Для растачивания отверстий большой длины, станки имеют задние стойки с люнетами для поддерживания борштанг.

Станок имеет продольно-подвижную переднюю стойку, несущую вертикально-подвижную шпиндельную бабку, поперечно-подвижный встроенный поворотный стол, радиальный суппорт на встроенной планшайбе, нормальный выдвижной расточной шпиндель диаметром 150 мм и продольно-устанавливаемую заднюю стойку с вертикально-устанавливаемым люнетом.

В станке отсутствует свешивание стола с направляющих в поперечном направлении, что значительно повышает точность обработки крупных корпусных деталей.

Станок отличается большой универсальностью и предназначен для обработки корпусных деталей весом до 8000 кг с габаритом, допускающим их установку на поворотном столе.

Техническая характеристика станка

Класс точности - Н

Наибольший диаметр выдвижного расточного шпинделя, мм - 150

Наибольший диаметр отв. растачиваемых шпинделем, мм - 1000

Наибольший диаметр растачиваемых суппортом планшайбы, мм - 1000

Наибольший диаметр торцовой поверхности обрабатываемой суппортом планшайбы, мм- 1000

Наибольший диаметр сверла, мм - 80

Размеры рабочей поверхности стола, мм - 2000x1600

Габариты станка, мм - 10700x5900x6000

Вес станка, кг - 41800

1.2 Способы закрепления заготовки и инструмента

Для правильной установки и закрепления заготовки на столе сверлильного станка применяют разнообразные прихваты, упоры, а также призмы, угольники, поворотные стойки, домкраты и др. Цилиндрические детали закрепляют с помощью универсальных настольных кулачков или цанговых патронов.

При креплении заготовок необходимо придерживаться следующих правил:

1. Заготовки закреплять надежно и жестко во избежание смещения и перекоса их во время обработки.

2. Для закрепления заготовки непосредственно на столе применять не менее двух упоров и прихватов, устанавливая упоры по возможности на одинаковом расстоянии один от другого.

3. Крепежные болты размещать как можно ближе к закрепляемой заготовке.

4. При закреплении заготовки сложной конфигурации непосредственно на столе станка (без приспособления) выверять правильность ее установки штангенрейсмасом, индикатором, угольником.

5. Не употреблять для регулирования положения заготовки деревянные подкладки и клинья.

6. При обработке на сверлильном станке тонкостенных втулок, колец, тонких листов и др., обладающих малой жесткостью, применять способы крепления, гарантирующие их от деформации (рисунок 1)

Рисунок 1 Пример правильного крепления заготовки из тонкого листа

Все режущие инструменты, применяемые на сверлильных станках, выпускаются с коническим или цилиндрическим хвостовиком. На сверлильных станках их крепят тремя способами: непосредственно в коническом отверстии шпинделя, с помощью переходных втулок, с помощью патронов.

При креплении режущего инструмента следует руководствоваться следующими основными правилами и приемами:

1.Режущий инструмент с коническим хвостовиком вставлять в конусное отверстие так, чтобы лапка инструмента вошла в паз, имеющийся в дне отверстия (рисунок 2а)

2.Если номер конуса у инструмента не совпадает с номером конуса шпинделя, необходимо использовать переходные втулки соответствующего номера. С наружным конусом, соответствующим конусу отверстия шпинделя и с внутренним, соответствующим конусу хвостовика инструмента (рисунок 3б)

Рисунок 2 - Установка режущего инструмента в шпинделе станка:

а) непосредственно в отверстие шпинделя

б) с помощью переходной втулки

в) с помощью патрона

3.Удалять режущий инструмент, переходные втулки и патроны из отверстия шпинделя можно с помощью специальных клиньев (рисунок 3) или эксцентрикового ключа (рисунок 4).

Рисунок 3 - Клинья для удаления инструмента из шпинделя станка:

а) - плоский, б) - радиусный

Рисунок 4 – Эксцентриковый ключ для удаления режущего инструмента из шпиндельного станка

Для удаления инструмента в паз шпинделя вставляют плоский клин (рисунок 3а) и легкими ударами молотка по торцу клина выбивают инструмент из шпинделя. Радиусным ключом (рисунок 3б) надо пользоваться как рычагом: вставив его изогнутый конец в паз шпинделя, нажимать сверху вниз на противоположный конец, постепенно продвигая клин глубже в паз, пока не выпадет инструмент. Эксцентриковый ключ (рисунок 4) также вставляют в паз шпинделя и поворотом рычага удаляют инструмент.

4. Правильно (по назначению) использовать различные патроны для зажима инструмента.

В самоцентрирующихся кулачковых патронах закрепляют режущий инструмент с цилиндрическим хвостовиком (рисунок 2в). Режущий инструмент в этом патроне прочно удерживается силами резания, и чем они будут больше, тем прочнее закреплен инструмент.

1.3 Устройство и принцип работы станка

Устройство станка

Рисунок 5 - Расположение органов управления станка

Расточной шпиндель и планшайба вращаются на точных подшипниках качении. Азотированный расточный шпиндель имеет высокую поверхностную твердость и длительно сохраняет свою точность. Шпиндель имеет верхний предел скорости вращения 950 об/мин. Переключение скоростей вращения производится посредством специального механизма с серводвигателем и автоматическим импульсным устройством (защищающим торцы зубьев колес от износа) с селективной установкой на выбранную скорость.

Привод встроенной планшайбы с радиальным суппортом может быть отключен при вращении расточного шпинделя во всем диапазоне скоростей, что повышает точность и важно с точки зрения техники безопасности.

Рабочие подачи и установочные перемещения стойки бабки шпинделя радиального суппорта и стола производятся от отдельных электродвигателей постоянного тока с широким диапазоном изменения скорости. Благодаря применению созданного на заводе типового электрического привода подачи с диапазоном скорости исполнительных двигателей 1:1800упрощена конструкция станков. Кинематические цепи станков короткие и простые без коробки подач и муфт переключения.

Каждый двигатель подачи имеет диапазон скорости достаточной для точных установочных движений, для рабочей подачи и для быстрых установочных перемещений. Динамическое быстродействие привода и жесткость цепей повышают точность установочных перемещений подвижных органов станка и позволяют осуществлять эти перемещения электромеханически от специального электрического оператора без ручных штурвалов.

Зажим и отжим подвижных рабочих органов станка автоматизирован, связан с выбором движения того или иного подвижного органа и производится без участи работающего. Конструкция зажимов обеспечивает прижатие направляющих к двум взаимно перпендикулярным плоскостям и исключает тем самым влияние зазоров в направляющих на точность установки.