Смекни!
smekni.com

Ракетные двигатели твердого топлива (стр. 7 из 7)

На всех этапах изготовления РДТТ вносятся уточнения в кон-
структорскую документацию с целью совершенствования кон-
струкции, унификации материалов, улучшения технологического
процесса и т. д.

5. ТЕХНИЧЕСКОЕ ЗАДАНИЕ
НА РАЗРАБОТКУ РДТТ

Задание на разработку РДТТ является основным доку-
ментом, которым руководствуется конструктор при проведении
проектных и конструкторских работ (упрощенным вариантом ТЗ
в учебном заведении является задание на курсовой или дипломный
проект).

В техническом задании в определенной последовательности рас-
положены требования, которым должен отвечать изготовленный
РДТТ. В общем случае содержание ТЗ выглядит следующим об-
разом [30].

На титульном листе указывается точная формулировка и
индекс РДТТ или двигательной установки (ДУ РДТТ). Под ДУ
РДТТ понимается установка, состоящая из одного или несколь-.
ких РДТТ, рулевых приводов и вспомогательных устройств, обес-
печивающих их функционирование.

В разделе общих технических требований оговариваются усло-
вия хранения и эксплуатации ракеты.

Например: хранение может производиться на складе, на от-
крытой площадке или под навесом; в снаряженном или неснаря-
женном состоянии; в составе ракеты или отдельно от нее и т. д.
В эксплуатационных требованиях указывается температурный
диапазон применения, относительная влажность, наличие и ха-
рактер воздействия солнечной радиации и другие характеристики
окружающей среды; Срок сохранения эксплуатационных харак-
теристик определяется как сумма сроков: от момента выпуска
окончательно собранного РДТТ до его установки на ракете и времени нахождения РДТТ в составе ракеты. В этом разделе дается
укрупненное описание состава РДТТ, функциональные особен-
ности (режимы тяги, наличие органов управления вектором тяги,
число камер и др.), требования технологического характера (взаи-
мозаменяемость сборочных единиц в двигателе, двигателя — в ра-
кете, условия контроля мест стыковки их между собой и др.).
Требования к внешнему виду и габаритным размерам приводятся,
на прилагаемом к ТЗ чертеже наружного вида РДТТ.

Важными здесь являются требования по уровню надежности.
Они определяют число проводимых испытаний, а следовательно,
и затрат на подтверждение поставленных требований. Например,
если задан уровень надежности 0,9; 0,99 и 0,999 при доверитель-
ной вероятности 50 %, то теоретически требуется проведение соот-
ветственно 5; 69; 693 испытаний. На практике прямыми испытания-
ми подтверждается лишь начальный уровень надежности. Даль-
нейшее обоснование надежности ведется аналитическими методами
и специальными приемами, позволяющими снизить затраты и со-
кратить сроки. Сюда относится применение таких методов кон-
троля и измерений, которые сразу дают достоверные результаты:
моделирование (в том числе и математическое), использование ре-
зультатов испытаний аналогичных РДТТ.

В общий раздел включаются также специальные требования.
Например, условия сохранения взрывобезопасности или пожаро-
безопасности и другие при нештатных ситуациях (случайном па-
дении, механическом повреждении и т. д.); защита от биологиче-
ских.вредителей; нетоксичности при работе; обеспечению безопас-
ности пусковых установок и т. п. Для определения соответствия
РДТТ этим требованиям могут быть проведены специальные испы-
тания или систематизированы результаты накопленного опыта
аналогичных изделий в подобных условиях.

В разделе требований к конструкции РДТТ указываются но-
минальные значения и допустимые отклонения масс и габаритных
размеров двигателя, изменения по времени в процессе работы
РДТТ значений координат центра масс и величин моментов инер-
ции относительно осей координат Х — продольной и У, Z— по-
перечных, а также поля допустимых отклонений. В этом разделе
оговариваются конструктивные особенности (например, места и
способы соединения с пусковой установкой, подвод энергопита-
ния, наличие узлов крепления стабилизаторов и требования к ним,
расположение кабельных магистралей ракеты, места установки
датчиков давлений и т. д.).

6. СВЕДЕНИЯ О ТВЕРДЫХ РАКЕТНЫХ ТОПЛИВАХ

Применяемые в РДТТ топлива являются унитарными
(многосоставными),
содержащими в своем составе горючие, окис-
лительные и другие компоненты.

По своей физической структуре твердые ракетные топлива
(ТРТ) делят на два класса: гомогенные и гетерогенные.

Гомогенные или нитроцеллюлозные топлива
Нитроцеллюлозное топливо (баллиститный порох)—
порох на основе нитратов целлюлозы, пластифицированных ни-
троэфирами или их смесями. Исходное вещество — целлюлоза
является сложным полимерным веществом. При обработке цел-
люлозы азотной кислотой образуются нитраты целлюлозы или
нитроклетчатка. Нитроклетчатка является унитарным топливом,
содержащим в своем составе атомы окислителя и горючего. Однако
самостоятельного значения как топливо нитраты целлюлозы не
имеют, так как горение этого вещества, спрессованного в топлив-
ные шашки, происходит неустойчиво, что объясняется пористо-
волокнистой структурой нитроклетчатки. Рыхлая структура ве-
щества способствует горению не только по поверхности, но и вну-
три многочисленных пор. При этом объемное горение переходит
в детонационное. Чтобы избежать детонационного горения путем
устранения пористо-волокнистой структуры нитроклетчатку же-
латинизируют растворителем. Для ракетных топлив применяют
труднолетучие растворители (нитроглицерин и нитродигликоль).
Эти вещества также являются энергоносителями, так как имеют
в своем составе атомы горючего и окислитель. Применять их в ка-
честве самостоятельного унитарного топлива в ракетном двигателе
также не представляется возможным из-за высокой чувствитель-
ности к механическим и термическим воздействиям. При обработке
нитратов целлюлозы нитроглицерином или нитродигликолем об-
разуется пластифицированная топливная масса, которую затем
можно прессовать в шашки различной конфигурации.

Нитроцеллюлозное топливо имеет две энергетические основы-
нитраты целлюлозы и растворитель-пластификатор в виде нитро-
глицерина или нитродигликоля. Отсюда появилось название-
двухосновные топлива. Состав нитроглицериновых топлив достаточ но сложен, так как помимо указанных веществ в них входят ком-
поненты, имеющие специальное назначение. К ним относятся
дополнительные растворители-пластификаторы, стабилизаторы го-
рения и стабилизаторы химической стойкости, технологические
добавки, катализаторы.

В настоящее время разработано большое количество рецептур
нитроцеллюлозных топлив. Несмотря на это весовые соотношения
компонентов топлива находятся в узких пределах. В табл. 2.1
и 2.2 приводятся эти величины [9, 22].

Смесеные твердые топлива.

[Смесевое твердое топливо (СТТ) представляет собой
многокомпонентную гетерогенную смесь окислителя, горючего-
связующего и различных добавок, способную к закономерному
горению без доступа кислорода извне с выделением значительного
количества энергии.

Состав СТТ менее сложен, чем у баллиститных порохов. Это
видно из табл. 2.3, где даны предельные значения изменения ком-
понентов по массе [9].

При разработке рецептур топлив имеется возможность исполь-
зовать более широкий круг исходных компонентов. Это позволяет
получать более высокие энергетические показатели, чем в нитро-
целлюлозных топливах.

В качестве окислителя в СТТ применяются соли минеральных
кислот. Наибольшее распространение в настоящее время получил
перхлорат аммония NH„CIO,. Это твердое вещество. Имеет невы-
сокую температуру разложения. При разложении выделяется
46 % свободного кислорода. В состав топлива NH,СIО, вводится
в тонкоизмельченном виде. С уменьшением зерна скорость горе-
ния увеличивается. В то же время более тонкий помол окисли-
теля повышает вязкость исходной топливной смеси, ухудшая тех-
нологические свойства.

Оптимальное (стехиометрическое) содержание перхлората ам-
мония в топливе должно составлять 88 %. В реальных топливах
во избежание резкого снижения механических свойств содержа-
ние окислителя редко превышает 80 %. Кроме того, с увеличением
содержания окислителя резко поднимается температура горения
топлива. При этом удельный импульс увеличивается незначительно.

Горючим в СТТ являются полимерные вещества. Они одновре-
менно выполняют роль связующего. Горючее-связующее должно
иметь высокую теплотворную способность, обладать хорошей свя-
зующей способностью и сохранять высокую эластичность в широ-
ком температурном интервале при достаточной механической
прочности. Такими веществами являются различные каучуки и
смолы. Горючего-связующего в состав топлива вводится примерно
15 ... 30 % от общей массы. По типу применяемого горючего-
связующего топлива разделяют на полисульфидные (тиокольные),
полибутадиеновые и полиуретановые. Полисульфидные каучуки
не нашли широкого применения вследствие низких энергетических
показателей и недостаточной механической прочности.

Список используемой литературы:

1.Фахрутдинов – “РДТТ”.

2.Волков – “Твердотопливные ракеты”

3.Волков – “История твердотопливных ракет”