Смекни!
smekni.com

Судовые установки (стр. 5 из 12)

4. Автоматизация судовой энергетической установки

4.1 Общие требования к автоматизации судовойэнергетической установки

Объём автоматизации новых судов должен обеспечивать обслуживание энергетической установки одним вахтенным на ходовых режимах и безвахтенное обслуживание на стоянке и, как минимум, обеспечить соответствие требованиям Национального Регистра уровня автоматизации А2. Для обеспечения такой системы на судне должно быть предусмотрено[20]:

· дистанционное автоматическое управление главным двигателем;

· автоматическое и дистанционное управление насосами, обслуживающими главный двигатель;

· автоматическое и дистанционное управление компрессорами;

· автоматизированная судовая электростанция, обеспечивающая автоматический и дистанционный пуск и автоматическую синхронизацию дизельгенератора;

· автоматическое управление подготовленного к работе вспомогательного и утилизационного котла;

· автоматическое поддержание температуры в системах охлаждения и смазочного масла в главном двигателе и вспомогательных механизмах;

· автоматическое регулирование температуры в системах подогрева топлива и воды;

· расширенная система сигнализации с регистрацией отклонений параметров и выводом обобщённых сигналов в каюты механиков, рулевую рубку, кают-компанию и столовую (учитывая безвахтенное обслуживание);

· автоматическая система регулирования вязкости топлива;

· автоматическая сепарация тяжёлого топлива с автоматическим управлением разгрузкой и загрузкой сепаратора и сигнализацией по срыву потока;

· автоматизированная система станции водоподготовки (для систем пневмоавтоматики);

· автоматическое или дистанционное управление осушения колодцев коридоров гребных валов и сепарацию сточных вод через сепаратор трюмных вод с сигнализацией, предотвращающей переполнение колодцев;

· дистанционный замер уровней в расходных и отстойных топливных танках и сигнализацией по предельным значениям уровней;

· расширенная автоматическая система пожарной сигнализации, включающая в себя танковые и дымовые датчики МО, предусматривающая надёжный способ проверки её исправности;

· указатели работы вспомогательных механизмов;

· детектор масляного тумана в картере главного двигателя;

· дистанционный пуск и остановка пожарных насосов из ЦПУ и остановка их с мостика;

· дистанционный пуск вентиляторов и их остановка из ЦПУ и остановка их с мостика;

· сигнализация о наличии вахтенного в МО.

4.2 Общий уровень автоматизации судовой энергетической установки

Проектируемая судовая энергетическая имеет следующие автоматизированные системы:

· систему пуска вспомогательных двигателей и управление ими фирмы «ASEA», обеспечивающую предпусковую автоматическую прокачку масла, запуск вспомогательного двигателя, находящегося в положении горячего резерва, при повышении нагрузки выше нормы или понижении оборотов и мощности вспомогательного двигателя. Синхронизация работающих дизельгенераторов, ввод их в параллель и распределение нагрузки осуществляется вручную на панели дизельгенераторов;

· система управления горением фирмы «SAAKKE» обеспечивает автоматическую продувку топки перед розжигом, розжиг механической форсунки, её работу в различных режимах нагрузки котлов с поддержанием необходимого коэффициента избытка воздуха, ступенчатое регулирование давления в котле путём включения и выключения форсунки на низких режимах нагрузки котлов. Система обеспечивает отсечку подачи топлива в топку при срыве факела, а также при нерозжиге форсунки. При неудачных попытках розжига система обеспечивает трёхкратное повторение операции. После третьей неудачной попытки подаётся звуковой и световой сигнал;

· система автоматического регулирования уровня второго контура котла обеспечивает поддержание уровня в барабане в зависимости от температуры, давления и расхода пара;

· системы регулирования температуры забортной и пресной воды, смазочного масла и наддувочного воздуха обеспечивают поддержание температуры в необходимых пределах. Фирма-изготовитель «PLAIGER»;

· система регулирования вязкости «ВАФ» поддерживает заданную вязкость топлива. Фирма-изготовитель «ВАФ-КОНОФЛОУ». Система состоит из вискозиметра «ВИСКОТЕРМ», дифференциального датчика давления «Бартон» модели 273А, поста пневматического управления модели «Ametek PIC07N21D 1315», регулирующего парового клапана с приводом диафрагмы, пружина типа «Конофлоу IB 10», воздушного фильтра регулятора типа Конофлоу VAF серии А24 и самописца вязкости типа VAFINST 735-E;

· имеется система автоматического запуска насосов, обслуживающих ГД;

· система сигнализации ALSY-2, выполняющая функции облегчения и рационализации наблюдения за судовыми механизмами путём выдачи обобщённых о однородных сигналов тревоги, поступающих от разных датчиков. Сигнал тревоги о ненормальном состоянии какого-либо механизма даётся как в виде световых сигналов на главном табло системы в ЦПУ, так и в виде звуковых и световых сигналов тревоги. Посредством вторичных групповых табло эти сигналы могут быть переданы на ходовой мостик и в каюту вахтенного механика. Система снабжена устройством автоматической регистрации сигналов. Управление ГД осуществляется через систему ДАУ, а также имеется вариант управления ГД с местного поста управления. Система ДАУ фирмы «MAN» AFD-III обеспечивает управление как с ходового мостика, так и из ЦПУ. В обоих случаях управление осуществляется через регулятор частоты вращения «Woodward»UG-40. В случае управления ГД с местного поста управления это происходит в обход регулятора, а именно воздействием непосредственно на ТНВД главного двигателя. Система обеспечивает три программы разгона и остановки двигателя, ускоренное прохождение критической частоты вращения, три попытки пуска двигателя, аварийную остановку и аварийную работу ГД.

4.3 Система автоматического регулирования температуры охлаждающей воды главного двигателя

4.3.1 Автоматическое регулирование температуры воды, охлаждающей цилиндры двигателя

Система автоматического регулирования (САР) состоит из объекта регулирования, представляющего собой зарубашечное пространство двигателя, охлаждаемое пресной водой; измерителя температуры охлаждающей воды на выходе из двигателя; ПИ-регулятора c сервомотором и регулирующим клапаном, посредством которого осуществляется байпасирование потока пресной воды через охладитель. Рабочий диапазон сигналов регулятора на входе (от измерителя) и выходе (к сервомотору) изменяется от 20 до 100 кПа. Номинальное значение температуры воды на выходе Q=60°С.

Статические свойства объекта регулирования по каналу внешнего воздействия определяются по данным таблицы 4.1.

Таблица 4.1.

Температура охлаждающей воды

Температура воды, °С Обозначение Значение
на входе Qвх 60
на выходе Qвых 69

Динамические свойства САР характеризуются переходной функцией разомкнутой системы, образующейся из контура регулирования после отключения регулятора. Ступенчатое воздействие на эту систему - изменение пневматического сигнала DРвх=const на входе сервомотора, а её переходная функция - изменение во времени давления сжатого воздуха DРвоз на выходе измерителя.

Отделив регулятор от САР, проводим эксперимент по получению переходной функции разомкнутой системы. С помощью переключателя отключаем сигнал управления регулятора и начинаем управлять сервомотором вручную, т.е. подаём на него ступенчатое воздействие DРвх=9 кПа. Измеритель фиксирует значения выходной величины - температуры охлаждающей воды на выходе из двигателя, а регистрирующее устройство как входную так и выходную величину объекта регулирования разомкнутой САР.

Зафиксированные значения DРвых , кПа через равные промежутки времени Dt=30 с : 70,0; 70,1; 70,5; 71,0; 71,5; 72,0; 73,0; 73,8; 74,5; 75,3; 76,0; 76,5; 77,0; 77,5; 77,8; 78,0; 78,5; 78,9; 79,1; 79,2; 79,4; 79,5; 79,5; 79,6; 79,6; ... асимптотически стремятся к значению DРвых=80,0. Величина входного ступенчатого воздействия: DРвх=9 кПа .


Таблица 4.2.

Переходная функция системы

Dt,c 0 30 60 90 120 150 180 210 240 270 300
DPвых 70 70,1 70,5 71,5 72,0 73,0 73,8 74,5 75,3 76,0 76,5
Dt,c 330 360 390 420 450 480 510 540 570 600 630
DPвых 77,0 77,5 77,8 78,0 78,5 79,1 79,2 79,4 79,5 79,5 79,6

Для составления выражения передаточной функции замкнутой САР необходимо определить коэффициент усиления объекта по возмущающему воздействию. Он представляет собой отношение статических изменений регулируемой величины к величине возмущающего воздействия на объект. С допустимой степенью точности Коl определяем как угловой коэффициент хорды в районе заданного уровня нагрузки:

Коl = DQ/DNe=[(60-50)]/[(8,7-0,5)*10^3]= 10/(8,2*10^3) (°С/кВт)

Для расчётов определим безразмерное значение этого коэффициента, разделив размерные величины на их базовые значения

Коl =10/(8,2*10^3) *Ne ном/Qо ном = 0,18 ,

где Ne ном = 8700 кВт;

Qо ном = 60°С.

Коэффициент усиления по регулирующему воздействию КоR определяем по ординате асимптоты переходной функции. Т.к. рассматриваем переходную разомкнутой системы, состоящей из трёх элементов (сервомотора, объекта и измерителя), то КоR является коэффициентом усиления этой (разомкнутой) системы.

КоR определяем как отношение ординаты асимптоты к возмущению:

КоR = Dh?/Qном * DР/DРвх ,