Смекни!
smekni.com

Расчет и проектирование вертикального кожухотрубного теплообменника для пастеризации продукта (стр. 2 из 6)

где где Gгр – затрата греющего пара,
.

Предполагая, что отдача тепла при охлаждении пара к температуре конденсации и при охлаждении конденсата незначительная, уравнение теплового баланса (1.5) можно записать в виде:

Q=Gгрr=G2c2(t-t2п), (1.6)

где r – удельная теплота конденсации,
.

По уравнениям (1.5) и (1.6) определяют затраты водяного пара. Если греющий пар является влажным, то теплоту конденсации умножаем на степень сухости водного пара. Если имеем тепловые потери в окружающую среду, то величину тепловой нагрузки необходимо умножить на коэффициент, который учитывает тепловые потери. Энтальпию и удельную теплоту конденсации греющего пара определяют по справочникам [6,10]. Коэффициент теплопередачи К,

, для плоской теплообменной поверхности:

, (1.7)
где a1, a2 – коэффициенты теплоотдачи соответственно для горячего и холодного теплоносителя,
. Коэффициент теплоотдачи показывает, какое количество теплоты передается от теплоносителя к 1 м2 поверхности стенки (или от стенки поверхностью 1 м2 к теплоносителю) в единицу времени при разности температур между теплоносителем и стенкой 1 град. dст – толщина теплообменной стенки, (м); lст – коэффициент теплопроводности материала стенки,
Коэффициент теплопроводности показывает, какое количество теплоты проходит вследствие теплопроводности в единицу времени через единицу поверхности теплообмена при падении температуры на один градус на единицу длины нормали к изотермической поверхности.

Коэффициенты теплоотдачи определяют из критерия Нуссельта, а последний находят по разным критериальным уравнениям в зависимости от конкретных условий теплообмена. В случае развитого турбулентного движения жидкостей в трубах и каналах (Re>10000):

Nu=

(1.8)

Для критериев Nu, Re и Pr за определяющую температуру принимается средняя температура жидкости, а для критерия Prст — температура стенки. По линейным размерам в критериях Nu и Re берется внутренний диаметр трубы или эквивалентный диаметр канала. При ламинарном движении (Re<2300):

Nu=

(1.9)

Для воздушного теплоносителя формулы (1.8) и (1.9) соответственно:

Nu=0,018Re0,8; (1.10)

Nu=0,13Re0,33Gr0,1. (1.11)

Для случая движения теплоносителя в межтрубном пространстве кожухотрубных теплообменников:

Nu=С(dеRe)0,6Pr0,33, (1.12)

где С – коэффициент, который учитывает присутствие сегментных перегородок в межтрубном пространстве; dе – эквивалентный диаметр межтрубного пространства, (м).

, (1.13)
где f – плоскость поперечного сечения потока, (м2); П – периметр сечения потока, (м); D – внутренний диаметр кожуха, (м); d – внешний диаметр трубы, (м); z – количество ходов по трубному пространству; n – количество труб в одном ходе.

При поперечном обтекании пучка труб (угол атаки 90о), шахматном и коридорном расположении труб соответственно:

Nu=

(1.14)

Nu=

(1.15)

Среднюю разность температур

, (0С), в случае прямотечения и противотечения определяют как среднелогарифмическую разность:

, (1.16)
где Dtб, Dtм – большая и меньшая разности температур между теплоносителями на концах теплообменника, (0С).

Если

<2, то среднелогарифмическую разность можно заменить без заметной погрешности среднеарифметической разностью:

. (1.17)

Для аппаратов с перекрестным и смешанным течением теплоносителей средняя разность температур находится путем умножения значения среднелогарифмического температурного напора достигаемого при противотечейной схеме движения теплоносителей на поправочный коэффициент, который определяется по справочникам [4-6].

1.1 Кожухотрубный теплообменник

Для проведения процесса пастеризации продукта выбирается кожухотрубная конструкция теплообменника.

Кожухотрубные теплообменники наиболее широко распространены в

пищевых производствах.

Кожухотрубный вертикальный одноходовой теплообменник

с неподвижными трубными решетками (см. рис. 1) состоит из цилиндрического корпуса-1, который с двух сторон ограничен прива­ренными к нему трубными решетками-2 с закрепленными в них гре­ющими трубами-3 (см. рис. 2), концы которых закреплены в специальных трубных решетках путем разваль­цовки, сварки, пайки, а иногда на сальниках. Пучок труб делит весь объем корпуса теплообмен­ника на трубное пространство, заключенное внутри греющих труб, и межтрубное. К корпусу прикреплены с помощью болтового соеди­нения два днища-5. Для ввода и вывода теплоносителей корпус и днища имеют патрубки-4. Один поток теплоносителя, например жидкость, направляется в труб­ное пространство, проходит по трубкам и выходит из теплооб­менника через патрубок в верх­нем днище. Другой поток тепло­носителя, например пар, вво­дится в межтрубное простран­ство теплообменника, омывает снаружи греющие трубы и выво­дится из корпуса теплообмен­ника через патрубок.

Кожухотрубные теплообменники могут быть с неподвижной трубной ре­шеткой или с температурным компенсатором на кожухе, вертикальные или горизонтальные. В соответствии с ГОСТ 15121-79, теплообменники могут быть двух- четырех- и шестиходовыми по трубному пространству.

Греющие трубы в трубных решетках размещают несколькими способами: по сторонам и вершинам правильных шестиугольников(в шахматном порядке), по сторонам и вершинам квадратов (коридорное) и по концентрическим окружностям. Такие способы размещения обеспечивают создание компактной конструкции теплообменника.

Из-за маленькой скорости движения теплоносителей одноходовые теплообменники характеризуются низкими коэффициентами теплоотдачи. С целью интенсификации теплообмена в кожухотрубных теплообменниках пучок труб секционируют, разделяют на несколько секций (ходов), по которым теплоноситель проходит последовательно. Разбивка труб на ряд ходов достигается с помощью перегородок в верхнем и нижнем днищах. Так же секционировать можно и межтрубное пространство за счет установки направляющих перегородок. Благодаря всем этим способам достигается повышение скорости теплоносителя, что приводит к увеличению коэффициента теплоотдачи в трубном пространстве.

При проектировании кожухотрубных теплообменников теплоноситель, который наиболее загрязняет поверхность теплообмена, направляют в трубное пространство, которое легче очищать.

1.2 Ообщие сведения о развальцовке труб теплообменника

Наиболее распространенный способ крепления труб в решетке — развальцовка. Трубы вставляют в отверстия решетки с некоторым зазором, а затем обкатывают изнутри специальным инструментом, снабженным роликами (вальцовкой). При этом в стенках трубы создаются остаточные пластические деформации, а в трубной решетке — упругие деформации, благодаря чему материал решетки после развальцовки плотно сжимает концы труб. Однако при этом материал труб подвергается наклепу (металл упрочняется с частичной потерей пластичности), что может привести к растрескиванию труб. С уменьшением начального зазора между трубой и отверстием в решетке наклеп уменьшается, поэтому обычно принимают зазор 0,25 мм. Кроме этого для обеспечения качественной развальцовки и возможности замены труб необходимо, чтобы твердость материала трубной решетки превышала твердость материала труб.

Развальцовочное соединение должно быть прочным и плотным (герметичным). Прочность соединения оценивают усилием вырыва трубы из гнезда, плотность — максимальным давлением среды, при котором соединение герметично.Развальцовка является наиболее распространенным способом получения прочных и герметичных соединений труб с трубными решетками (коллекторами) теплообменных аппаратов.

Для получения надежного соединения трубы с трубной решеткой (коллектором) необходимо выполнить следующее условие:

D' = Dо +

+ KxS,

где D'- расчетный внутренний диаметр трубы после развальцовки
Dо- внутренний диаметр трубы до развальцовки

- диаметральный зазор между трубой и трубной решеткой