Смекни!
smekni.com

Проектирование холодильной камеры для хранения мяса птицы, свинины, субпродуктов и рыбы в город (стр. 2 из 4)

г) температура воздуха в тамбуре холодильника принимается на 15°С ниже расчетной температуры наружного воздуха и составляет 16°С.

д) температура грунта принимается на глубине 3…3,5 м 3,5°С.

4. Выбор изоляционного материала

В качестве теплоизоляционного материала для стен, граничащих со смежными неохлаждаемыми помещениями, применяется пенополистирол марки ПСБ-С (ГОСТ 15588 - 70), для перегородок между камерами – пенобетон.

Для защиты теплоизоляционных конструкций от проникновения влаги принимается гидроизоляционный материал – битум.

Стены камер отделываются мраморной плиткой, которая обладает низкой влагопоглотительной способностью.

Расчет изоляции заключается в определении толщины изоляционного слоя, исходя из установленного нормативного значения коэффициента теплопередачи соответствующего ограждения.

Расчет толщины изоляции производится только для перегородок и перекрытий камер, которые находятся в наихудших температурно-влажностных условиях, в данном случае – мясорыбная камера. Для остальных ограждений толщина изоляции принимается равной полученной для данного вида конструкции.

Толщина изоляционного слоя ограждения камеры определяется по формуле (5.1)

,(5.1)

где Кд - нормативный коэффициент теплопередачи ограждения, Вт/(м2 ∙град), Значение коэффициента теплопередачи принимаются согласно рекомендациям СНиП II-3-79 «Строительная теплотехника» и СНиП 2.11.02-87 «Холодильники».

aн - коэффициент теплоотдачи от воздуха к наружной поверхности ограждения, Вт/(м2 ∙град);

aв - коэффициент теплоотдачи от внутренней поверхности ограждения квоздуху данной камеры, Вт/(м2 ∙град);

dиз, di - толщины изоляционного и других слоев материалов, составляющихконструкцию ограждения, м;

lиз, li - коэффициенты теплопроводности изоляционного и других слоевматериалов, Вт/(м ∙град).

Все полученные значения толщины изоляционного материала округляют до стандартной величины и определяют действительный коэффициент теплопередачи принятой конструкции ограждения по формуле (5.2)

(5.2)

Полученные значения действительного коэффициента теплопередачи увеличиваются на 10-20 %, так как при выполнении изоляционных работ трудно достичь совершенной плотности укладки изоляционного материала, вследствие чего его изолирующие свойства снижаются.

Таким образом, расчетный коэффициент теплопередачи будет определяться по формуле (5.3)

Кр = (1,1…1,2)Кд, (5.3)

где Кр – расчетный коэффициент теплопередачи принятой конструкции ограждения, Вт/(м2 град);

Кд – действительный коэффициент теплопередачи принятой конструкции ограждения, Вт/(м2 град).

5. Расчет изоляции.

Строительно-изоляционная конструкция наружных стен представлена на рисунке 5.1.

Рисунок 5.1 – Строительно-изоляционная конструкция внутренней стены мясорыбной камеры: 1 – штукатурка, δ = 20 мм, λ = 0,9 Вт/м×град; 2 – кирпичная кладка, δ = 120 мм, λ = 0,7 Вт/м×град; 3 – пароизоляция (битум), δ = 4 мм, λ = 0,18 Вт/м град; 4 – теплоизоляция (пенополистирол), λ = 0,04 Вт/м град; 5 – отделочный слой (плитка), δ =5 мм, λ = 2,2 Вт/м×град.

Расчет толщины изоляции ведется по формуле (5.1):

Принимается стандартная толщина изоляции – 0,1 м (100мм)

Действительный коэффициент теплопередачи рассчитывается по формуле (5.2):

Расчетный коэффициент теплопередачи рассчитывается по формуле (5.3):

Расчет толщины изоляции перегородки между мясорыбной камерой и тамбуром

Строительно-изоляционная конструкция стены представлена на рис. 5.2.

Рисунок 5.2 Строительно-изоляционная конструкция перегородки между мясорыбной камерой и тамбуром: 1 – отделочный слой (плитка), δ = 5 мм, λ = 2,2 Вт/м×град; 2 – штукатурка, δ = 20 мм, λ = 0,9 Вт/м×град; 3 – пароизоляция (битум), δ = 4 мм, λ = 0,18 Вт/м×град; 4 – блоки (пенобетон), λ = 0,12 Вт/м×град.

Расчет толщины изоляции ведется по формуле (5.1):

Принимается стандартная толщина блока – 0,25 м.

Действительный коэффициент теплопередачи рассчитывается по формуле (5.2):

Расчетный коэффициент теплопередачи рассчитывается по формуле (5.3):

Расчет толщины изоляции перекрытия между мясорыбной камерой и вышерасположенным помещением

Строительно-изоляционная конструкция перекрытия представлена на рис. 5.3.

Рисунок 5.3 Строительно-изоляционная конструкция перегородки между мясорыбной камерой и вышерасположенным помещением: 1 –Чистый пол, δ = 5 мм, λ = 2,2 Вт/м×град; 2 – Штукатурка,δ = 20 мм, λ = 0,9 Вт/м×град; 3 – теплоизоляция (пенополистирол) λ = 0,04 Вт/м×град; 4 – пароизоляция,δ = 4 мм, λ = 0,18 Вт/м×град; 5 - ж/б плита покрытия, δ = 270 мм, λ = 1,45 Вт/м×град; 6 – цементно-песчаная стяжка, δ = 40 мм, λ = 1,1 Вт/м×град

Расчет толщины изоляции ведется по формуле (5.1):

Принимается стандартная толщина блока – 0,1 м. Действительный коэффициент теплопередачи рассчитывается по формуле (5.2):

Расчетный коэффициент теплопередачи рассчитывается по формуле (5.3):

Расчет толщины изоляции перекрытия пола

Строительно-изоляционная конструкция пола представлена на рис. 5.4.

Рисунок 5.4 Строительно-изоляционная конструкция пола: 1 –метлахская плитка, δ = 5 мм, λ = 2,2 Вт/м×град; 2 – цементная стяжка,δ = 40 мм, λ = 1,1 Вт/м×град; 3 – армированный бетон δ = 270 мм, λ = 1,45 Вт/м×град; 4 – керамзитобетонная стяжка δ =40мм, λ = 0,16 Вт/м×град; 5 керамзитовый гравий–,δ =40 мм, λ = 0,16 Вт/м×град; 6 цементный защитный слой, ,δ = 20 мм, λ = 0,9 Вт/м×град;7- гидроизоляция (битум) δ = 4 мм, λ = 0,18 Вт/м×град; 8-утрамбованный грунт со щебнем.

Расчет толщины изоляции ведется по формуле (5.1). и для зоны на глубине до 3,5 м.она составляет

м

Действительный коэффициент теплопередачи рассчитывается по формуле (5.2):

Расчетный коэффициент теплопередачи рассчитывается по формуле (5.3):

6. Калорический расчет

Калорический расчет учитывает теплопритоки, влияющие на изменение температурного режима в охлаждаемых камерах. Расчет производится для каждой камеры отдельно, что позволяет подобрать камерное оборудование.

В калорическом расчёте учитываются следующие теплопритоки в каждую из охлаждаемых камер:

1. Q1 - теплопритоки через ограждения камеры. Это приток тепла от наружной (по отношению к данной камере) среды путём теплопередачи вследствие разности температур наружной среды и воздуха внутри камеры Q¢1 и приток тепла в результате солнечной радиации Q¢¢1.

2. Q2 - теплоприток от грузов (от продуктов и тары) при их термической обработке. Для фруктовых холодильников вместо Q2 находят Q5 – теплоприток в результате дыхания фруктов.

3. Q3 - теплоприток от наружного воздуха при вентиляции камеры.

4 Q4 - эксплуатационные теплопритоки (при открывании дверей охлаждаемых камер, включении освещения, пребывании людей и т.п.).

Перечисленные теплопритоки изменяются в зависимости от времени года, сезонности поступления продуктов и по другим причинам. Поэтому допускаем, что максимумы всех рассчитанных теплопритоков совпадают по времени. В связи с этим холодильное оборудование должно быть выбрано так, чтобы обеспечивался отвод тепла из камер при самых неблагоприятных условиях, т.е. при максимуме теплопритоков, равном сумме:

Q = Q1 + Q2 + Q3 + Q4, Вт. (7.1)

Теплопритоки через ограждения (Q1, Вт) рассчитываются по формуле (7.2)

Q = Q¢1 + Q¢¢1, (7.2)

где Q'1 - теплопритоки путём теплопередачи вследствие наличия разности

температур сред, находящихся по ту и другую сторону ограждения, Вт;

Q¢¢1 - теплопритоки за счёт поглощения теплоты солнечной радиации, Вт.

Приток тепла через ограждение путём теплопередачи вследствие наличия разности температур (Q¢1, Вт) определяется по формуле (7.3)

1 = Кр∙ F∙ (tср - tв), (7.3)

где Кр - расчётный коэффициент теплопередачи ограждения, подсчитанный раньше при расчёте толщины теплоизоляции (раздела 6), Вт/(м2 град);

F - теплопередающая поверхность ограждения, м2;

tcp - температура среды, граничащей с внешней поверхностью ограждения, °С;