Смекни!
smekni.com

Вибрационный плотномер (стр. 4 из 11)

Так, в частности, установлено, что при расчетах на ЭВМ относи­тельной толщины "присоединенного слоя" жидкости параметры кб следует принимать равными 0,3 для ци­линдрического резонаторов. При этом относительная толщина "при­соединенного слоя" жидкости для резонаторов находит­ся в пределах 0,2—0,22. Влияние относительной удаленности кф фрон­тальной стенки ограничивающего резервуара от поверхности резона­торов проиллюстрировано графиками, куда нанесены так­же результаты эксперимента. Расчеты показывают, что фронтальная стенка перестает оказывать какое-либо влияние на резонатор, если он удален от нее на расстояние порядка двух определяющих размеров. Экспериментальные же данные свидетельствуют о том, что резонато­ры можно приближать к стенкам резервуара на более близкие рас­стояния.

Результаты расчетов свидетельствуют о пренебрежимо малом изменении коэффициентов Крдля жидкостей при варьирова­нии параметра β в достаточно широких пределах. Таким образом, мож­но практически рассчитать значения "присоединенных масс" жидкос­тей для колеблющихся в них механических резонаторов, считая все жидкости несжимаемыми (β= 0). Это значительно облегчает процедуру расчетов.

5. Разработка конструкции плотномера.

5.1. Анализы параметрических зависимостей.

Представляет интерес про­анализировать степень влияния отклонений конструктивных параметров резонаторов от их оптимальных значений на абсолютную погреш­ность измерения плотности. Такая оценка позволяет сформулировать требования к качеству изготовления механических резонаторов и уста­новить допуски на отклонение размеров отдельных деталей.

Рисунок 8. Влияние на погрешность плотномеров отклонений от номинальных значений определяющего размера (линия 1), толщины стенки (линия 2) и длины (линия 3) резонатора.

На рисунке 8 приведены графики расчетных зависимостей абсолютной погрешнос­ти Δ п.п измерения плотности вибрационного плотномера с цилиндрическим резонатором от изме­нения в к раз от оптимального значения одного из конструктивных параметров (определяющего размера а, длины l и толщины стенки h0 резонатора) при фиксированных оптимальных значениях других пара­метров.

Вид графиков указывает на необходи­мость ответственного подхода к выбору конструктивных парамет­ров и изготовлению отдельных элементов механических резонаторов.

В таблицах приведены числовые значения зависимости абсолютной погрешности от толщины стенки резонатора (таблица 1), определяющего размера (таблица 2) и длины резонатора (таблица 3).

Таблица 1. Зависимость абсолютной погрешности от толщины стенки резонатора

Толщина стенки резонатора h0, мм Абсолютная погрешность ΔП.П, кг/м3
0,3 1,172
0,5 1,343
1,0 1,791
1,5 2,250
2,0 2,714
2,5 3,183
3,0 3,656

Рисунок 9. Зависимость абсолютной погрешности от толщины стенки резонатора

Таблица 2. Зависимость абсолютной погрешности от определяющего размера резонатора

Определяющий размер а, мм Абсолютная погрешность ΔП.П, кг/м3
5,0 48,606
10,0 7,822
15,0 2,862
20,0 1,431
25,0 0,844
30,0 0,553
35,0 0,389
40,0 0,288
45,0 0,221
50,0 0,176
55,0 0,143
60,0 0,119

Рисунок 10. Зависимость абсолютной погрешности от определяющего размера резонатора

Таблица 3. Зависимость абсолютной погрешности от длины резонатора

Длина резонатора l, мм Абсолютная погрешность ΔП.П, кг/м3
10 1,904
50 1,408
100 1,431
150 1,468
200 1,493
250 1,506
300 1,511
350 1,514
400 1,516

Рисунок11. Зависимость абсолютной погрешности от длины резонатора.

В тоже время и от плотностей материала, из которого изготовлен резонатор, и от плотности измеряемой среды также зависит ряд параметров. Одним из таких параметров является частота вибрационного плотномера.

(15)

(16)

Рисунок 12. Зависимость частоты колебаний цилиндрического резонатора от плотности измеряемой среды.

Таблица 4. Зависимость частоты колебаний цилиндрического резонатора от плотности измеряемой среды.

Плотность измеряемой среды ρ, кг/м3 Частота колебаний f, Гц
400 2886,95
600 2621,17
800 2417,44
1000 2254,86
1200 2121,21
1400 2008,81
1600 1912,58
1800 1828,97
2000 1755,44
2200 1690,13

Рисунок 13. Зависимость частоты колебаний цилиндрического резонатора от плотности материала, из которого он изготовлен.

Таблица 5. Зависимость частоты колебаний цилиндрического резонатора от плотности материала, из которого он изготовлен.

Плотность марки материала

резонатора ρ, кг/м3

Частота колебаний f, Гц
4500 2658
5000 2618
5500 2580
6000 2543
6500 2508
7000 2474
7500 2442
8000 2411
8500 2381

5.2. Расчет разжимного кольца

При введении в канавку кольцо сжимают так, чтобы оно прошло через отверстие корпуса диаметром D= 60 мм.

Предельно допустимая высота стальных колец равна h= (0.08÷0.15)D, h= 5.0мм. Толщина кольца равна b= 0.4h, b= 2.0 мм. Глубина канавки h1 = 0,3h = 1,5 мм. Наружный диаметр канавки равен D1 = 1.083D = 65 мм. Для получения радиального натяга наружный диаметр кольца принимаем равным D2 = 67.5 мм. Ширину прорези l в свободном состоянии выбираем с таким расчетом, чтобы при смыкании концов наружный диаметр D2 кольца уменьшился до диаметра D отверстия, т.е.

l = 0,1πD = 18 мм.

Так как в сомкнутом состоянии кольцо не имеет правильной цилиндрической формы, то принимают с запасом

l= (0.35÷0.40)D = 22 мм.

5.3. Расчет катушки индуктивности

В данном вибрационном плотномере используются 4 катушки индуктивности.

Рисунок 14. Разбивка магнитного поля воздушного зазора преобразователя на простые геометрические фигуры

Точность расчета преобразователя в основном определяется точностью определения проводимости воздушных зазоров.

Магнитное поле в зазоре не является плоскопараллельным, магнитный поток выпучивается из-под полюсов. Поэтому для расчета проводимости воздушного зазора применяют методразбивки магнитного поля на простые геометрические фи­гуры, проводимость которых затем и определяют по известным формулам, которые приведены в таблице 18 [8]. В нашем случае поле разбивается на 5 простых фигур.

С достаточной для практики точностью рекомендуется принимать Za´= Za´´= Zb´´.

Определяем проводимость отдельных фигур.

Проводимость полуцилиндра (фигуры 1 и 2).

(17)

Проводимость цилиндрического кольца (фигуры 3).

(18)

Проводимость четверти цилиндра (фигуры 4 и 5).

(19)

Проводимость четверти цилиндра (фигура 6).

(20)