Смекни!
smekni.com

Жидкостное химическое травление (стр. 5 из 5)

Некачественно травление Al обусловлено несколькими факторами :

1) недопроявленный резист;

2) неравномерность толщины;

3) напряжения в пленках поверх ступенек;

4) гальваническое ускорение травления из-за наличия преципитатов Al-Cu;

5) неравномерность толщины окисла;

6) нестабильность температуры (>±1оС).

Эти факторы приводят к перетравливанию и закорачиванию.

Хром является вторым после алюминия металлом, наиболее часто подвергающимся травлению. Он широко используется при изготовлении фотошаблонов. В качестве травителя используется сульфат церия/HNO3.

Вследствие индукционного эффекта (формирования верхнего слоя Cr2O3) травление пленки нелинейно, и поэтому момент окончания травления не может быть определен по ее начальной толщине.

Электрохимическое травление.

Прикладывая потенциал к металлу, покрытому резистной маской, можно перенести рисунок в материал в более мягких травителях, чем при травлении в химически равновесных условиях. Платина, например, обычно травится в горячей царской водке (HCl/HNO3), которая снимает большинство резистов. Подавая потенциал 1.0 В, можно травить платину в разбавленной HСl. В технологии предпочтительнее электрохимические процессы, так как для них точнее определяется момент завершения травления (рис. 18), их легко автоматизировать, применяя оборудование для электроосаждения. Подложки являлись анодом в ячейке, к которой прикладывалось напряжение (рис. 18). Ток ячейки быстро


Рис. 18. Автоматизация определения окончания процесса путем контроля тока I при электро-химическом травлении.


поднимается до пикового значения вслед-ствие поляризации электролита и затем снижается до стационарного значения Iо. Окончание травления сопровождается фиксированным процентным снижением тока. Контактное сопротивление должно быть низким (<1Ом×см), чтобы обес-печить точное регулирование требуемой для травления силы тока. Электрохими-ческое воздействие аналогично реактив-ному ионно-лучевому травлению, поскольку ионы движутся направленно.


Практические аспекты жидкостного химического травления.

Практические аспекты жидкостного химического травления (ЖХТ) связаны со статическми и динамическими характеристиками этого процесса, а также с его конечными результатами.

Таблица 10. Аспекты ЖХТ.

Статтистические характеристики

Динамические характеристики

Результаты ЖХТ

Однородность пленкиСостав пленкиМолярность травителяСостав травителяРазмер изображения в резистеТемператураОбъем травителя Разбрызгивание травителяПеремешивание травителяСкорость травленияЭрозия резистаОслабление адгезииМомент прекращения травленияИстощение травителя ПодтравливаниеПроколыЗакорачивание, разрывыДопуск на изменение размеровСелективностьНаклон стенокИзменение размеров

К трем основным переменным процесса жидкостного травления относятся толщина травимого слоя, температура и время обработки. Перемешивание реагента не играет существенной роли в случае ограничения скорости на стадии химической реакции. Скорость большинства процессов жидкостного травления (HF) ограничена скоростью химической реакции. Типичные флуктуации перечисленных переменных могут привести к перетравливанию. Перетравливание или неполное стравливание фатально не столько из-за большого ухода размеров, сколько из-за того, что оно затрудняет проведение последующих технологических операций, например диффузии. Чемтолще удаляемая пленка, тем больше уход размеров вследствие подтравливания и тем больше допуск на этот уход.

Проколы уменьшают выходы годных, причем величина этого уменьшения определяется чувствительностью конкретной схемы к размерам, местоположению и плотности дефектов. Травление переводит точечный дефект в резисте в рисунок на подложке. Если максимальный размер проколов по порядку величины сравним с изменением размеров при ЖХТ (0.4-1.0 мкм), то резко возрастает вероятность образования разрывов в сплошных линиях.

Другие характеристики травления.

Однородному распределению температуры в ванне с реагентом способствует перемешивание. Ультрафильтрация раствора травителя в процессе ЖХТ счищает реагент от остатков резиста и других твердых частиц, способных блокировать травление. Во избежание загрязнений бачок с травителем должен быть закрыт и изолирован от другого оборудования. Необходимо тщательно подбирать совместимые с реагентом материалы элементов установок, иначе неизбежны загрязнения и утечки. Для определения момента окончания травления и оценки величины перетравливания удобно одновременно проводить травление дифракционных решеток или элементов с меньшим характерным размером, чем в основном изображении. Время жизни реагента можно вычислить по стехиометрии химической реакции. Например, для травления 1 моль SiO2 требуется 6 молей HF. Предположим, что надо обработать 25% площади 100-мм пластины в буферном растворе 2М HF с соотношением компонентов 1:7 соответственно (см. рис. 10). В ванне емкостью 8 литров содержится 16 молей HF.

SiO2 + 6HF ® H2SiF6 + 2H2O. (41)

Полагаем падение скорости травления на 20% предельным, что соответствует уменьшению концентрации HF также на 20% (рис.10). Для пленки SiO2 толщиной t=0.5 мкм и плотностью r вычисляем количество удаленных молей SiO2:

Моли SiO2 = p r2 t r/ SiO2 =

= 3.14(25 см2) 5×10-5 см(2.3 г/см3)/60 (42)

На одну пластину требуется 4.8×10-4 молей HF, следовательно, в нашей ванне с учетом 20%-ного падения скорости (это соответствует 3.2 молям HF) можно обработать 25000 подложек. Если производительность установки равна 500 пластин в день, то раствор в танке придется менять раз в 50 дней (если пренебречь потерями материала и загрязнениями).

Заключение.

Травление - критическая стадия литографического процесса. На этой стадии жестко испытываются адгезия, непроницаемость, уровень дефектности и химическая инертность резиста. Стойкость резиста к травлению и его адгезия к подложке являются, возможно, наиболее важными параметрами резистного литографического процесса и в наибольшей степени определяют его успех. Применение резиста с высокой стойкостью к травлению гарантирует минимальное искажение изображения при переносе его в подложку. Практические пределы применимости процесса ЖХТ определяются его разрешением -1.5-2.0 мкм - и уходом размеров при травлении - ±0.2-0.5 мкм.
Список литературы.

1. Травление полупроводников [сборик статей]. Пер. с англ. С. Н. Горина. М.: Мир, 1965.

2. Перри Дж. Справочник Инженера-химика/ Пер. с англ. - Т.2. - М.: Химия, 1969.

3. Полтавцев Ю. Г., Князев А. С. Технология обработки поверхностей в микроэлектронике. - Киев: Тэхника, 1990.

4. Технология полупроводниковых приборов и изделий микроэлектроники.[Учеб. для ПТУ: в 10 кн.]. - М: Высш. шк., 1989.

5. Авдеев Е. В., Колтищенков В. М., Пантелеева Т. С. Двумерное топологическое модерирование травления//Электронная промышленность. - 1986.- №4.-С.14-17.

6. Голосов В. В. Электрохимическое травление GaAs. В сб.: Силовые п/п приборы. - Талин : Валгус, 1981.

7. Васильева Н. А., Ерофеева И. Г. Электрохимическое полирование подложек GaAs// Электронная промышленность. -1988.-№8.-С. 39-40.

8. Киреев В. А. Краткий курс физической химии. М.: Химия, 1978.