Смекни!
smekni.com

Реконструкция электроснабжения г Барнаула (стр. 20 из 21)

2. Определяется расчётная продолжительность пожара и расчётное число одновременных пожаров.

Расчётная продолжительность пожара tp во всех случаях принимается 3 ча­са в соответствии с нормами.

Расчётное число пожаров np зависит от площади территории предприятий или стройки. Так, при площади территории в 150 га и более в расчёт принима­ют два одновременных пожара, при площади менее 150 га принимается один пожар.

3. Определяется потребное количество воды для данного предприятия по формуле:

м3, (10.2)

где Qp - общий расчётный расход воды на пожаротушение данного пред­приятия определяется по формуле (10.1), л/с;

tp - расчётная продолжительность пожара, час;

nр- расчётное число одновременных пожаров для данного предприятия.

4. Определяется необходимый противопожарный запас воды на случай аварии водопроводных сетей.

Неприкосновенный запас воды создаётся из расчёта обеспечения подачи воды на пожаротушение из наружных гидрантов и внутренних пожарных кра­нов с учётом количества одновременных пожаров в течение трёх часов их дей­ствия.

Следовательно, неприкосновенный запас воды рекомендуется определять по формуле (10.2) и хранить в запасных резервуарах или водонапорных башнях.

Qp=10+2

2,5=15 л/с;

W=

=54 м3.

Микропроцессорная система дуговой защиты КРУ

напряжением 6-10 кВ.

Значительное число шкафов комплектных распределительных устройств (КРУ), находящихся в эксплуатации, не имеет полноценной быстродействующей защиты, способной совместно с коммутационными аппаратами локализовать наиболее тяжелые аварии в них, вызванные внутренними КЗ, сопровождаемыми открытой электрической дугой . Горение дуги внутри шкафов КРУ более 0,15-0,2с приводит к тяжелым последствиям и зачастую сопровождается выгоранием двух-трех соседних шкафов , а в некоторых случаях и целых секций .Существующие защиты на основе разгрузочных клапанов и фототиристоров не отвечают современным требованиям ни по надежности, ни по чувствительности и сервисным функциям. Заботясь о повышении надежности энергоснабжения потребителей и устойчивости функционирования энергосистем, РАО ”ЕЭС России” издало приказ № 120 от 01.07.98 ”О мерах по повышению взрывопожаробезопасности энергетических объектов ” (п. 1.12.5), предписывающий оснащать шкафы КРУ полноценной дуговой защитой.

Многолетний опыт разработки и внедрения дуговых защит КРУ позволил создать микропроцессорную дуговую защиту, описываемую в статье. Принцип ее действия основан на контроле уровня светового потока (освещенности) и тока. Контроль светового потока освещенности внутри отсеков КРУ из-за их замкнутого пространства дает возможность обеспечить практически абсолютную селективность. Особенность защиты заключается в наличии электрических каналов связи, позволяющих в отличие от оптико-волоконных датчиков и линий связи обеспечивать высокую технологичность ремонта и восстановления защиты после аварии.

Микропроцессорная система дуговой защиты состоит из следующих функциональных блоков: центрального управляющего устройства (ЦУУ);

локальных модулей сбора информации (ЛМСИ); системной шины данных (СШД); оптико-электрических датчиков (ОЭД).

Оптико - электрический датчик входит в состав ЛМСИ, а для расширения зоны действия(увеличения числа контролируемых отсеков) к локальному модулю могут подключаться дополнительные ОЭД.

Локальный модуль сбора информации представляет собой микропроцессорное устройство, устанавливаемое в одном из отсеков шкафа КРУ, например в отсеке высоковольтного оборудования или отсеке релейной защиты. В последнем случае дополнительные ОЭД устанавливаются в защищаемых отсеках. Элементы ЛМСИ (далее локальный модуль); мультиплексор (М); блок задания конфигурации (БЗК); блок обработки информации (БОИ); выходные органы (ВО); шина данных (ШД); приемо-передатчик (ПП).

Питание ЛМСИ с напряжением ± En осуществляется от блока питания ЦУУ, а выходной орган выполнен на основе электромагнитного реле KL.

Приемо-передатчик (ПП) подключается к СШД, которая физически реализована с помощью стандартного промышленного протокола передачи данных – RS-485. Переключатели в блоке задания конфигурации устанавливают номер от 0 до 31, соответствующий конкретному ЛМСИ.

К системной шине данных можно подключить до 32 ЛМСИ, что вполне достаточно для защиты секции, состоящей в большинстве случаев из меньшего числа ячеек. Помехоустойчивость канала передачи данных обеспечена с помощью программных и аппаратных способов.

Центральное управляющее устройство, структурная схема которого представлена на чертеже, через ПП подключено к СШД и обеспечивает последовательный опрос ЛМСИ. На данном рисунке, кроме указанных, приняты обозначения: БВП - блок выходных преобразователей, БП –блок питания с преобразованием постоянного напряжения 220 В в постоянное напряжение меньшего уровня ± Еn, БВ/ В –блок ввода/ вывода. В случае возникновения дугового КЗ в защищаемой зоне, приводящего к повышению уровня освещенности в поврежденной ячейке и пуску, например по току, обеспечивается формирование выходного сигнала (согласно выбранной в БКЗ параметров системы). В нормальном режиме защищаемой электроустановки система защиты осуществляет самодиагностику. При выходе из строя одного или нескольких ЛМСИ, всей или части СШД формируется сигнал о неисправности (срабатывает выходной орган) и заполняется журнал ошибок, в котором содержится информация о неисправном элементе. Центральное управляющее устройство имеет широкий набор функций, позволяющих, например, проводить диагностирование ЛМСИ и СШД, логически исключить один или несколько ЛМСИ из списка опрашиваемых, при выводе содержащих их ячеек в ремонт.

Основные технические характеристики защиты

Порог срабатывания по освещенности,Лк……..………………100 ÷ 200

Время срабатывания (при 16 и 32 ЛМСИ), мс………….Не более 16 / 32

Максимальное число ЛМСИ в системе, шт ……………………………32

Максимальное число ОЭД подключаемых к ЛМСИ, шт …………….…6

Напряжение питания постоянного тока, В …………………………....220

(-20% ± 10%)

Потребляемая мощность ЦУУ, Вт ………………………………….5 ÷ 9

Потребляемая мощность ЛМСИ, Вт ………...…….…………… 0,2 ÷ 0,3

Вид выходного сигнала ЦУУ …………………..………”Сухой контакт”,

4 раздельных выхода

Вид выходного сигнала ЛМСИ ……………”Сухой контакт”

Температура окружающего воздуха, °С ……….……От – 25 до + 45

Масса, кг:

ЦУУ ……………………......……………………………Не более 1,5

ЛМСИ …………….……………………………….. Не более 0,2

Примечание.

1.Наличие тестового и функционального контроля.

2.Возможность ручного и автоматического конфигурирования системы защиты.

На этом же чертеже приведена структурная схема дуговой защиты секции с использованием описанной системы. Секция КРУ при этом делится на несколько зон, в которых при КЗ алгоритм функционирования и воздействия на коммутационные аппараты однотипен: отсеки ТТ и кабельной разделки; выключателей; секционного выключателя (СВ); вводного выключателя (ВВ); шинный отсек.

При КЗ в зоне 1 отключение выключателя поврежденной ячейки может быть эффективным, а электроприемники, подключенные к другим линиям, остаются в работе (сигнал ”Сраб n+1”). При КЗ в зоне 2 отключение собственного выключателя может усугубить аварию и в этом случае предпочтительней воздействие на ВВ и СВ, что безусловно приводит к отключению значительного числа потребителей (сигналы ”Сраб n+1” и ”Сраб n+2”).

При КЗ в зоне 3 альтернативы отключению ВВ и СВ не существует и поэтому формируются сигналы ”Сраб n+1” и ”Сраб n+2”.

При КЗ в зоне 4, т.е. в отсеках СВ, требуется отключение двух вводных выключателей (сигнал ”Сраб n+1”).

К полному погашению одной из секций КРУ приводит КЗ в отсеках ВВ(зона 5), так как в этом случае предусмотрено отключение коммутационного аппарата стороны высшего напряжения и СВ(сигналы ”Сраб n +3” ”Сраб n+2 ”).

Алгоритмы функционирования описанной системы дуговой защиты могут изменяться, что определяется как требованиями, предъявляемыми к ней на стадии проектирования, так и в процессе ее эксплуатации.

В системе предусмотрена функция резервирования отказов низших ступений , то есть при КЗ в зоне 1 и отказе выключателя Qn через время, равное ступени селективности, срабатывает реле отключения, воздействующее на выключатели Qn+1 и Qn+2.

Алгоритмы формирования внешних воздействий на коммутационные аппараты при повреждениях в различных отсеках КРУ разработаны авторами на основе практического выполнения дуговой защиты на базе клапанов давления, фототиристоров, ”логической” защиты шин, защит аналогичного принципа действия, с учетом мнения специалистов энергосистем и проектных организаций, а также собственного опыта разработки и внедрения рассматриваемых защит.

Проведенные испытания системы защиты РДЗ-018, в том числе и натурные испытания с токами короткого замыкания от 3 до 5 кА в ячейках КРУ напряжением 6 кВ, подтвердили ее работоспособность и эффективность, а также позволили внести ряд изменений, улучшающих электромагнитную совместимость и сервисные функции.

Заключение

Целью данного дипломного явилось разработка системы электроснабжения района города. В настоящем проекте освещены следующие вопросы: 1) определение расчетных нагрузок элеватора и района электроснабжения в целом; 2) определение центра электрических нагрузок на основе картограммы нагрузок; 3) выбор числа и мощности трансформаторов потребителей; 4) выбор числа и мощности трансформаторов ГПП; 5) расчет токов короткого замыкания; 6) на основе рассчитанных токов короткого замыкания выбор оборудования, кабелей; 7) расчет продольной дифференциальной защиты, МТЗ, защита от перегрузки, газовая защита трансформатора; 8) технико-экономический расчет; 9) рассмотрен вопрос охраны труда, который включил в себя вопросы пожаробезопасности на зерноперерабатывающем предприятии и расчет потребного количества огнетушащих средств для тушения пожаров.