Смекни!
smekni.com

Проектирование цепей коррекции, согласования и фильтрации усилителей мощности радиопередающих устройств (стр. 3 из 16)

(2.3)

где

=
– верхняя круговая частота полосы пропускания усилителя.

Пример 2.1. Рассчитать выходную КЦ для усилительного каскада на транзисторе КТ610А (

=4 пФ [13]), при
= 50 Ом,
=600 МГц. Определить
и уменьшение выходной мощности на частоте
при использовании КЦ и без нее.

Решение. Найдем нормированное значение

:
=
=
= 0,7536. В таблице 2.1 ближайшее значение
равно 0,753. Этому значению
соответствуют:
= 1,0;
= 0,966;
=0,111;
=1,153. После денормирования по формулам (2.3) получим:
= 12,8 нГн;
= 5,3 пФ;
= 43,4 Ом. Используя соотношения (2.1), (2.2) найдем, что при отсутствии выходной КЦ уменьшение выходной мощности на частоте
, обусловленное наличием
, составляет 1,57 раза, а при ее использовании – 1,025 раза.

Таблица 2.1 – Нормированные значения элементов выходной КЦ

0,1 0,2 0,3 0,4 0,5 0,180 0,382 0,547 0,682 0,788 0,099 0,195 0,285 0,367 0,443 0,000 0,002 0,006 0,013 0,024 1,000 1,001 1,002 1,010 1,020
0,6 0,7 0,8 0,9 1,0 0,865 0,917 0,949 0,963 0,966 0,513 0,579 0,642 0,704 0,753 0,037 0,053 0,071 0,091 0,111 1,036 1,059 1,086 1,117 1,153
1,1 1,2 1,3 1,4 1,5 0,958 0,944 0.927 0,904 0,882 0,823 0,881 0,940 0,998 1,056 0,131 0,153 0,174 0,195 0,215 1,193 1,238 1,284 1,332 1,383
1,6 1,7 1,8 1,9 0,858 0,833 0,808 0,783 1,115 1,173 1,233 1,292 0,235 0,255 0,273 0,292 1,437 1,490 1,548 1,605

2.2. ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР ШИРОКОПОЛОСНОГО УСИЛИТЕЛЯ

При проектировании широкополосных передатчиков средней и большой мощности одной из основных является задача максимального использования транзистора выходного каскада усилителя по выходной мощности. Оптимальное сопротивление нагрузки мощного транзистора, на которое он отдает максимальную мощность, составляет единицы ом [2]. Поэтому между выходным каскадом и нагрузкой усилителя включается трансформатор импедансов, реализуемый, как правило, на ферритовых сердечниках и длинных линиях [1–4, 14]. Принципиальная схема усилительного каскада с трансформатором импедансов, имеющим коэффициент трансформации сопротивления 1:4, приведена на рис. 2.2,а, эквивалентная схема по переменному току – на рис. 2.2,б, где

– конденсатор фильтра;
– трансформатор;
,
– элементы схемы активной коллекторной термостабилизации [15];
– транзистор выходного каскада усилителя. На рис. 2.2,в приведен пример использования трансформатора с коэффициентом трансформации 1:9.

б)

а) в)

Рис. 2.2

Согласно [16, 17] при заданном значении нижней граничной частоты

полосы пропускания разрабатываемого усилителя требуемое число витков длинных линий, наматываемых на ферритовые сердечники трансформатора, определяется выражением:

, (2.4)

где d – диаметр сердечника в сантиметрах;

N – количество длинных линий трансформатора;

– относительная магнитная проницаемость материала сердечника;

S – площадь поперечного сечения сердечника в квадратных сантиметрах.

Значение коэффициента перекрытия частотного диапазона трансформирующих и суммирующих устройств на ферритовых сердечниках и длинных линиях лежит в пределах 2·104...8·104 [16, 17]. Поэтому, приняв коэффициент перекрытия равным 5·104, верхняя граничная частота

полосы пропускания трансформатора может быть определена из соотношения:

(2.5)

При расчетах трансформаторов импедансов по соотношениям (2.4) и (2.5) следует учитывать, что реализация

более 1 ГГц технически трудно осуществима из-за влияния паразитных параметров трансформаторов на его характеристики [3].

Требуемое волновое сопротивление длинных линий разрабатываемого трансформатора рассчитывается по формуле [16, 17]:

. (2.6)

Методика изготовления длинных линий с заданным волновым сопротивлением описана в [18].

Входное сопротивление трансформатора, разработанного с учетом (2.4) – (2.6), равно:

. (2.7)

Пример 2.2. Рассчитать

,
,
трансформатора на ферритовых сердечниках и длинных линиях с коэффициентом трансформации сопротивления 1:9, если
= 50 Ом,
= 5 кГц.

Решение. В качестве ферритовых сердечников трансформатора выберем кольца марки М2000НМ 20х10х5,имеющих параметры:

= 2000; d = 6 см; S = 0,5 см2. Из (2.5) – (2.7) определим: N = 3,
= 16,7 Ом,
= 250 МГц. Теперь по известным параметрам кольца из (2.4) найдем: n=16,7. То есть для создания трансформатора импедансов с
= 5 кГц необходимо на каждом ферритовом кольце намотать не менее 17 витков. Длина одного витка длинной линии, намотанной на ферритовое кольцо, равна 3 см. Умножая это значение на 17, получим, что минимальная длина длинных линий должна быть не менее 51 см. С учетом необходимости соединения длинных линий между собой, с нагрузкой и выходом усилителя, следует длину каждой длинной линии увеличить на
2...3 см.

2.3. ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР полосового УСИЛИТЕЛЯ

При проектировании полосовых передатчиков средней и большой мощности, также как и при проектировании широкополосных, одной из основных является задача максимального использования по выходной мощности транзистора выходного каскада усилителя. Однако в этом случае между выходным каскадом и нагрузкой усилителя включается трансформатор импедансов, выполненный в виде фильтра нижних частот [3, 19, 20]. Чаще всего он выполняется в виде фильтра нижних частот четвертого порядка [19–23]. Принципиальная схема усилительного каскада с таким трансформатором приведена на рис. 2.3,а, эквивалентная схема по переменному току – на рис. 2.3,б, где элементы

формируют трансформатор импедансов, обеспечивающий оптимальное, в смысле достижения максимального значения выходной мощности, сопротивление нагрузки транзистора и практически не влияют на форму АЧХ усилительного каскада. Методика расчета оптимального сопротивления нагрузки мощного транзистора дана в [2, 3, 24].