Смекни!
smekni.com

Электроизоляционная керамика (стр. 2 из 9)

Кварцевые материалы. Кристаллический кремнезем SiO2 является одним из основных компонентов фарфоровой массы, который вво­дят в состав шихты в виде кварцевого песка или жильного кварца. Размер гранул кварце­вых песков составляет 0,05—3 мм. Кристалли­ческий кремнезем существует в нескольких по­лиморфных формах; три основные — кварц, тридимит и кристобалит. В свою очередь кварц и кристобалит имеют α- и β-модификации, тридимит — α-, β- и γ-модификации. Стабиль­ными формами являются β-кварц (при темпера­туре ниже 573 °С), α-тридимит (870—1470 °С) и α-кристобалит (1470—1710°С). Переход из одной модификации кремнезема в другую со­провождается изменением объема, плотности и других параметров. При производстве электро­керамики используются пески и жильный кварц, химический состав которых приведен в табл. 5 (см. приложения).

В зависимости от месторождения кварце­вые пески имеют примеси (Fe2O3, TiO2, A12O3, CaO, MgO и др.), наиболее нежелательные из которых Fe2O3 и ТiO2 (допустимое содержание не более 0,15 %), СаО и MgO (не более 0,2 %).

Полевые шпаты представляют собой без­водные алюмосиликаты, содержащие щелочные (Na+, К+) и щелочно-земельные (Са2+) катио­ны. Основные виды применяемых в керамиче­ском производстве полевых шпатов: калиевый (микроклин) с приблизительной формулой К2О•А12O3•6SiO2, натриевый (альбит) Na2O•Al2O3•6SiO2, кальциевый (анортит) СаО•А12О3•2SiO2 и бариевый (цельзиан) ВаО•А12О3•2SiO2. Полевые шпаты всегда содержат примеси оксидов железа, магния, кальция и др./18/

Лучшим для изоляционной керамики по­левым шпатом является микроклин. Из-за повышенного содержания Na2O в полевом шпа­те снижаются температура обжига, вязкость стеклофазы керамики и существенно ухудша­ются его электрофизические свойства. Чем больше соотношение К2О и Na2O в полевом шпате, тем лучше свойства керамики.

В связи с ограниченностью запасов высо­кокачественного полевого шпата для производ­ства высоковольтных изоляторов используют пегматиты.

Пегматиты представляют собой крупнозер­нистые кристаллические породы — смесь полевого шпата с кварцем. Химический состав пег­матитов и полевых шпатов приведен в табл. 6 (см. приложения).

Глинозем — безводный оксид алюминия Al2О3 — представляет собой порошок со сред­ними размерами сферических гранул 50— 200 мкм. Глинозем широко применяется как основной компонент электро­фарфора и ультрафарфора (на основе корун­да) и в качестве самостоятельного материала для изготовления высоковольтных, высокочас­тотных изоляторов, конденсаторов, деталей вакуум-плотных узлов (корпусов предохраните­лей, колб натриевых ламп, корпусов полупро­водниковых вентилей, обтекателей антенн, плат для интегральных схем и др.).

Безводный оксид алюминия существует в нескольких кристаллических модификациях, из которых самой устойчивой является α-А12О3 (корунд). Эта модификация характеризуется малым tgδ≈2•10-4, высоким ρ≈1014 Ом•м, высокой теплопроводностью и стойкостью к термоударам, наибольшей плотностью (3999 кг/м3).

Две другие модификации: γ-А12О3 и β-А12О3, последняя из которых представляет собой со­единение глинозема со щелочными и щелочно­земельными оксидами, имеют меньшую плот­ность (соответственно 3600 и 3300—3400 кг/м3) и более высокие значения tgδ (≈50•10-4 и 1000•10-4). Технический глинозем представляет собой в основном γ-А12О3 с частичным содержанием гидратов глинозема.

При нагреве γ-Аl2О3 переходит в α-А12О3 с уменьшением объема на 14,3 процента. Для уменьше­ния усадки керамики при обжиге технический глинозем предварительно обжигают при темпе­ратуре 1450—1550 °С.

Спектрально чистый корунд плавится при 2050 °С, а изделия из него при небольшой ме­ханической нагрузке могут быть использованы даже при температуре до 1800°С.

Для производства электроизоляционной ке­рамики применяются технический глинозем (шесть сортов), электроплавленный корунд и глинозем особой чистоты в зависимости от на­значения керамики.

Кальцит — карбонат кальция СаСО3, пред­ставляющий собой плотный кристаллический агрегат, называется мрамором, а при тонко­дисперсной структуре — мелом. При нагреве СаСО3 разлагается с выделением СО2 соглас­но реакции СаСО3 → СаО + СО2↑. Скорость раз­ложения зависит от скорости подъема темпе­ратуры и от давления воздуха. При нормальных условиях температура разложения состав­ляет порядка 900 °С.

Для производства электроизоляционной ке­рамики в основном используют мел Белгород­ского месторождения с содержанием СаСО3 не менее 98 %.

В керамике карбонат кальция использует­ся как основной компонент кристаллических фаз титанатов, станнатов и цирконатов каль­ция, анортита, волластонита, а также входит в состав стеклофазы различных электрокерамик и глазурей.

Ашарит — борат магния 2MgO•B2O3•H2O является стеклообразующим оксидом. Его твер­дость по Моосу — 4. Он добавляется в керами­ческие массы в количестве 2—3 %. Ашарит в состав ашаритового фарфора вводится в виде предварительно приготовленного спека из гли­нозема, ашарита и полевого шпата в количест­ве до 60 % массы, для улучшения электроизо­ляционных свойств фарфора.

Циркон ZrO2•SiO2 (цирконовая руда) име­ет твердость 7—8; плотность его около 4700 кг/м3. Руду обогащают, в результате получен­ный циркон содержит ZrO2 не менее 60 % и Fe2O3 не более 0,15 %. Циркон используется в качестве основного компонента в стойкой к тер­моударам керамике и в виде части кристалли­ческой фазы цирконового фарфора. В послед­нем случае циркон вводится в состав фарфора вместо кварца, кристаллическая фаза керами­ки в таком случае представлена цирконом и муллитом. Химический состав сырья, содержа­щего цирконий, приведен в табл. 7 (см. приложения)./13/

Сырьевые материалы для производства других видов керамики. Тальк разных место­рождений имеет состав, близкий к 3MgO•4SiO2•H2O или 4MgO•5SiO2•H2O, с незначи­тельным количеством других оксидов. Лучшие разновидности талька отличаются малым со­держанием СаО (от 0,2 до 1 %) и Fe2O3 (от 0,3 до 0,8 %). Тальк должен иметь однородный состав без прослоек, а потери массы при про­каливании не должны превышать 5—7 %.

Химический состав тальков, используемых для производства стеатитов, приведен в табл. 8 (см. приложения).

Диоксид титана — мелкодисперсный поро­шок белого цвета с желтоватым оттенком. Для природного и полученного химическим путем диоксида титана характерен полиморфизм.

Технические данные диоксида титана при­ведены в табл. 9, химический состав — в табл. 10 (см. приложения)./17/

3. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ЭЛЕКТРОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ И ИЗДЕЛИЙ

В общем случае технологический процесс производства электрокерамических изделий можно представить схемой рис. 1 (см. приложения). Для каж­дого конкретного случая процесс будет не­сколько видоизменяться, однако можно отме­тить общие для большинства случаев основные этапы производства: приготовление формовоч­ной массы; оформление заготовок изделий; сушка, глазурование и обжиг изделий. В неко­торых случаях обожженные изделия могут подвергаться дополнительной механической об­работке./5/

Приготовление формовочной массы. Керамическая формовочная масса характеризуется размерами и распределением частиц; от этого зависят плотность упаковки, влагосодержание и прочность заготовки до обжига, технологиче­ские свойства материала, а также характери­стики обожженных керамических изделий.

Измельчение компонентов является одним из основных процессов при приготовлении фор­мовочных масс. Как правило, твердые мине­ральные компоненты массы сначала подверга­ют грубому измельчению в щековых дробилках и на бегунах, затем просеивают на виброситах для получения заданной фракции, далее про­изводят мокрый или сухой тонкий помол на ро­тационных шаровых мельницах периодического или непрерывного действия. Сверхтонкий по­мол производят в струйных мельницах с ис­пользованием сжатого воздуха.

Степень измельчения отдельных компонен­тов массы зависит от требований, предъявляе­мых к материалу, размеров изделий и приме­няемых способов оформления, сушки и обжига. При измельчении обычно происходит смешение компонентов массы. Степень измельчения про­веряют ситовым и микроскопическим анализа­ми, а в лабораторных условиях — седиментационным. Для удаления частиц железа измель­ченную массу пропускают через магнитный се­паратор.

Обезвоживание водного шликера после мокрого помола производится на фильтр-прес­се под давлением 0,8—3 МПа. Масса, остаю­щаяся между пластинами фильтра в виде кор­жей, в зависимости от назначения проходит различную обработку. При изготовлении масс для пластичной формовки коржи поступают для переминки в вакуум-прессы, с помощью ко­торых обеспечивается хорошее извлечение воздуха, окончательная переминка массы и выдавливание ее через мундштук, придающий заго­товкам определенный профиль. Заготовки ис­пользуются для формовки изделий пластичными методами.

Для приготовления водного литейного шли­кера коржи распускаются в шликерных мешалках в воде с добавкой электролита и доводят­ся до нужной влажности. После вакуумирования шликер подается на литье. Безглинистые массы или массы с небольшим содержанием глинистых веществ (например, конденсаторные массы с содержанием около 3 % бентонита) не подвергают обезвоживанию на фильтр-прессе, а используют как литейный шликер после вакуумировки.