Смекни!
smekni.com

Схемотехническое и функциональное проектирование вакуумной коммутационной аппаратуры (стр. 11 из 19)

воряющих ТЗ, получают матрицу нормированных параметров , необ-

ходимую для определения интегрального критерия :

(3.7)


- 79 -

Здесь ( ) - число конструкций ВКА, соответствующих ТЗ. Выделив

из этого множества два объекта и , которым соответствуют

векторы и , по выражению (2.19) определяют значения .

Наименьшее значение интегрального критерия определит наилучшую

конструкцию ВКА.

Во втором случае задачу можно считать решенной.

Наконец, в третьем случае, когда аналогов-конструкций ВКА,

по всем параметрам удовлетворяющих ТЗ, нет, для расширения об-

ласти применения известных решений предлагается произвести усече-

ние ТЗ путем поочередного отбрасывания параметров качества с

незначительными коэффициентами весомости ( например, с 0,05).

В результате получаем матрицу с суженным набором параметров, ана-

лиз которой на соответствие усеченному ТЗ может выявить удовлетво-

ряющие ему конструкции ВКА-прототипы. Проведя оценку выявленных

конструкций по критерию , аналогично первому случаю, определяют

наилучшую по наиболее важным параметрам качества конструкцию ВКА.

При этом известность отброшенного параметра качества, несоот-

ветствующего основному ТЗ, позволяет сформировать задание для мо-

дернизации соответствующего ФМ ВКА, т.е. возникает цель проектиро-

вания. Если ни одна из рассматриваемых известных конструкций ВКА

не попадает в расширенную область применения, необходимо проекти-

рование новой конструкции, либо смягчение соответствующих требова-

ний ТЗ.

Следует отметить, что в первых двух случаях варианты

конструкций ВКА, неудовлетворяющие ТЗ по параметрам с незначи-

тельными весовыми коэффициентами, выпадают из рассмотрения. При

этом возможен вариант, когда в их числе оказывается конструкция с

лучшим интегральным показателем качества ,если его определять

для полной матрицы (3.5). В данной ситуации целесообразно проде-


- 80 -

лать операции, описанные в третьем случае.

Предложенный подход позволяет также решить задачу оптимально-

го комплектования конструкций ВКА в группы сходных однородных

объектов [128]. Эту операцию, разбивающую всю совокупность ВКА

на группы близких однотипных конструкций, целесообразно прово-

дить на начальной стадии выбора. Группу конструкций, которая

включит в себя наилучшую, также можно подвергнуть анализу. Для

комплектования групп строят матрицу парных расстояний:

(3.8)

где - расстояние между -ой и -ой конструкцией, и находят

внутригрупповую сумму квадратов отклонений:

(3.9)

где - количество объектов в группе.

Лучшим будет разбиение, когда

(3.10)

где - число групп разбиения.

Рассмотренная методика устраняет недостатки известных мето-

дик [129,130], хорошо алгоритмизируется и более достоверно оцени-

вает качество конструкций, чем, например, взвешенная сумма локаль-

ных критериев [131].

3.3. Методика синтеза структур ВКА.

Формализация процесса синтеза структур ВКА основана на описа-

ниях, приведенных в главе 2, и проведена в соответствии с (3.2) с

использованием языка исчисления предикатов, близкого конструктору,

привыкшему оперировать понятиями, и позволяющего автоматизировать

процесс структурного синтеза [132].

Учитывая сказанное, условие существования аналога в общем


- 81 -

случае запишем в виде:

(3.11)

где - множество существующих конструкций ВКА; , , -

соответственно: множества имен свойств ВКА, параметров свойств и

их значений; , , - соответственно имена, параметры и значе-

ния параметров свойств, регламентируемые ТЗ; - предикат, озна-

чающий отношение принадлежности; - предикат, означающий отно-

шение эквивалентности; - предикат, означающий отношение " ",

- предикат, означающий, что конструкция является аналогом.

В случае ложности в выражении (3.11) предиката или ,

рассматриваемая конструкция может быть отнесена к группе прототи-

тов, а необходимость изменения ее конкретных , , формиру-

ет цели проектирования ВКА ( ), приводящие к возникновению соот-

ветствующих вспомогательных функций Найденные из анализа дере-

ва целей вспомогательные функции добавляются к базовой и, на-

ходясь в отношении с основными , образуют новую (см. п.

2.4). При этом с учетом утверждений, сделанных в п. 2.2, правило

формирования множества допустимых ( ) имеет следующий вид:

(3.12)

где , = 1, 3, 5 - обязательные функции ВКА, соответственно:

создавать и передавать механическую энергию для перемещения уплот-

нительного диска, передавать движение из атмосферы в вакуумную

среду и герметизировать стык седла с уплотнительным диском; -

предикат, означающий отношение включения; - предикат, означаю-

щий допустимость структуры.

В свою очередь каждой рабочей функции из можно поста-


- 82 -

вить в соответствие реализующий ее обобщенный родовой элемент -

ФМ, являющийся абстрактным объектом : ( ), что поз-

воляет сформировать множество абстрактных структур ВКА.

Морфологическая структура ВКА определяет множества вариан-

тных (состоящих из типов ФМ - ) и элементных (состоящих из вари-

антов исполнения (марок) различных типов ФМ - ) структур ВКА

( и ). Очевидно, что существующие множества данных структур

содержат и такие структуры, которые заведомо не соответствуют

конкретному ТЗ на проектирование ВКА, поэтому перед их генерацией

целесообразно решить задачу выбора допустимых структурных состав-

ляющих и . Выбор типов ФМ и конструктивных вариантов их

выполнения является важной процедурой схемотехнического проектиро-

вания ВКА и с позиций системного подхода определяется отношениями

между типами (вариантами) структурных составляющих и значениями

параметров требований, предъявляемых к ФМ частными ТЗ, которые мо-

гут быть сформированы из общего ТЗ на разработку ВКА на основе

анализа взаимосвязей их свойств.

Формализация выбора типа ВКА и вариантов ее структурных

составляющих осуществлена с помощью разработанных с учетом морфо-

логии ВКА ( ) таблиц соответствия , в которых пара-

метр , имеющий значений, представляется булевскими пе-

ременными , где = 1, если и

= 0, если ; посредством отображения ( ):

(3.13)

где - -ое значение параметра -го требования к -ому

ФМ; - множество вариантов -го ФМ.

Аналогично может быть произведен при необходимости и выбор

типа ВКА.

Таким образом, решение задачи выбора типа структурных состав-

ляющих ВКА сводится к построению таблиц соответствия, в которых по


- 83 -

столбцам располагаются условия и критерии выбора, по строкам - ти-

пы . Основной задачей при этом является установление логических

зависимостей между типами ФМ ВКА и значениями или интервалами

значений , параметров . Следует отметить, что определение

градаций условий и критериев выбора является ответственным и тру-

доемким процессом в связи с необходимостью максимального уменьше-

ния дублирования исходных данных и обеспечения их полноты.

Выявленные при проведении системного анализа свойства ВКА,

рассмотренные в принадлежности к типам основных ФМ с учетом пред-

ложенной классификации конструкций ВКА, позволили сформировать

следующие таблицы соответствия (применимости): таблица 3.1 - таб-

лица применимости типов приводов ВКА; таблица 3.2 - таблица приме-

нимости типов вакуумных вводов движения; таблица 3.3 - таблица

применимости типов уплотнительных пар ВКА. Выбор производится сле-

дующим образом: исходя из значений требований ТЗ, по заданным ин-

тервалам параметров выбора из соответствующей таблицы применимости

выбираются строки, имеющие единицы во всех рассматриваемых столб-

цах, что отражает допустимость соответствующих типов ФМ ВКА

( ).

Введение отношений следования между найденными формиру-

ет обобщенную вариантную структуру . С учетом последова-

тельности структуры ВКА и выражения (3.12) это можно записать в

виде ( ):

(3.14)

где , , - обязательные ФМ, соответственно: привод, ввод

движения в вакуум и уплотнительная пара; - предикат, означающий

отношение следования между ФМ.

Каждая структурная составляющая (ФМ) обладает набором пара-

метров, в том числе описывающих ее входные и выходные свойства.


- 88 -

При этом указанные свойства могут быть описаны качественными приз-

наками.

Рациональность структуры выявляется процедурой , определя-

ющей качественную совместимость выбранных элементов и

описываемой следующим выражением:

(3.15)

При этом обобщенное правило формирования имеет вид:

(3.16)

где , , , = 1, - множество качественных признаков,

описывающих входные и выходные свойства ФМ; - предикат, означа-

ющий отношение принадлежности признаков к ФМ; - предикат, озна-

чающий отношение эквивалентности между признаками; - предикат,

означающий отношение "состоять из".

Использование морфологической структуры ВКА и значений

требований ТЗ позволяет сформировать множество допустимых элемент-

ных структур , выбирая среди качественно совместимых типов ФМ

ВКА соответствующие конструктивные варианты их исполнения ( ):

(3.17)

где , = 1, - множество параметров -го варианта -го ФМ;

- множество параметров ТЗ; - предикат, означающий отношение

" " между значениями параметров.

На основе анализа отношений параметрической совместимости

выбранных ФМ, описываемых выражением (3.18), формируют в

соответствии с обобщенным правилом (3.19)( ):


- 89 -

(3.18)

(3.19)

где , - соответственно значения параметров входных и выход-

ных свойств ФМ ВКА; - предикат, означающий отношение " = " меж-

ду значениями параметров.

Причем отношения совместимости образуют следующее множество: