Смекни!
smekni.com

Теория структурообразования и оптимизация структуры ИСК (стр. 3 из 7)

При использовании смесей с повышенной вязкостью, обладающих на реологической кривой условным динамическим пределом текучести и предельным напряжением сдвига, важно не допустить при формовании напряжений, способных разрушить сплошность изделия. Так, например, в некоторых случаях отмечается образование дефектов структуры, если допустить

напряжение в массе, превышающее Р2. Опыт показывает, что для хорошо формующихся смесей величина отношения должна быть не ниже 10-6. Конкретные и точные пределы реологических характеристик зависят от разновидности смеси и технологического способа формования – пластичного, вибрационного без пригруза или с пригрузом и т.п.

Формование изделий сопряжено, как правило, с плотной укладкой смеси, зернистых или другого вида заполнителей.

В зависимости от разновидности смеси формование производится с использованием укладчиков, прессов, экструдеров, каландров и других машин. Выбор оптимального способа формования и уплотнения зависит от характера исходного сырья и массовости производства, требуемых свойств и вида изделий. Но при всех способах важно обеспечить связность и начальную прочность изделий с последующим упрочнением их на других стадиях обработки.

Во многих технологиях формование и уплотнение смеси совмещаются в одну операцию, в результате чего химические и физико-химические процессы, обеспечивающие структурообразование на микро- и макроуровнях, протекают также одновременно. К ним относятся тиксотропное разжижение и упрочнение, массо- и теплообмен, перемещение заполняющей и вяжущей частей относительно друг друга с образованием плотной структуры к концу выполнения такой совмещенной операции. Естественно, что в этот период не прекращаются главные структурообразующие процессы – сорбционные, растворения и другие процессы, которые, подобно тому как это было на стадии перемешивания смеси, завершаются возникновением новых соединений и фаз, хотя и в сравнительно ограниченных количествах. Гораздо в больших размерах они выделяются на последующих стадиях технологии, например при тепловой обработке отформованных и уплотненных изделий.

К весьма значительному технологическому переделу, влияющему на структурообразование ИСК, как и других материалов, относится специальная обработка отформованных и уплотненных изделий с помощью одного, двух или большего числа внешних воздействий на материал в некотором последовательном или комбинированном порядке. Обработка может быть тепловой, тепло-влажностной, химической, электрофизической, автоклавной, вакуум-пропиточной, радиационной и др. Основная цель обработок – обеспечить развитие процессов микро- и макроструктурообразования с возможно более полным переводом систем из устойчивого состояния в термодинамически устойчивое. И хотя соответствующие процессы могут продолжаться и после произведенной обработки, в том числе в эксплуатационный период работы конструкции, однако большинство их протекает на стадии обработки, реже – на стадии выдерживания изделий в обычных, «нормальных» условиях.

Эффективность обработки характеризуется постепенным или быстрым упрочнением структуры свежеизготовленных изделий с переходом ее в твердое или твердообразное состояние. Отвердевает в основном вяжущая часть, поскольку другая заполняющая часть конгломерата состоит из смеси уже твердых компонентов. В вяжущей части формируется либо одна новая фаза, либо их может быть несколько. Новая фаза в виде химических соединений, возникающих под влиянием хемосорбционных реакций на поверхности твердых частиц или в растворе, вначале появляется в виде скопления микрозародышей как центров реакции и их развития с увеличением в размерах до мельчайших кристалликов. Затем продукты химических реакций выделяются в самостоятельную фазу, концентрация которой со временем нарастает.

Кроме химических реакций к образованию новой фазы приводит кристаллизация растворенного вещества из пересыщенного раствора.

Пересыщенный раствор обладает сравнительно небольшой термодинамической устойчивостью. В соответствии с современными взглядами сначала появляются зародыши новой фазы в виде скопления малого числа молекул, образования ассоциаций частиц при столкновениях в растворе отдельных ионов растворенного вещества.

На определенном этапе частицы-зародыши достигают критического размера, при котором каждая обладает достаточной поверхностной энергией, чтобы вызвать дополнительное адсорбирование частиц растворенного вещества. Увлекаются и мельчайшие твердые частицы других веществ, находящихся в системе, в том числе частиц новообразований. Зародыши становятся, таким образом, центрами кристаллизации. Последние выделяются сначала в виде аморфных частичек, которые обычно с большой скоростью переходят в кристаллическое состояние с укрупнением за счет наслоения вещества на гранях кристалликов. Большое влияние на свойства оказывает характер установившегося контакта и связей между отдельными кристаллами, особенно когда они состоят не из одного, а из двух, трех и большего числа их видов, например, в твердых сплавах или в продуктах кристаллизации из сложных растворов. Значительное влияние на прочность, деформативность и другие свойства оказывает контактирование кристаллов или их обломков через тонкие прослойки инородного вещества, нередко находящегося в стеклообразном состоянии.

Стеклообразные вещества характеризуются, во-первых, изотропностью и, во-вторых, способностью при нагревании переходить постепенно в жидкое состояние. Известно, что кристаллическое вещество полностью переходит в жидкое состояние при одной характерной для него постоянной температуре. Возможен самопроизвольный переход вещества из стеклообразного в кристаллическое состояние, сопровождаемый выделением в небольших количествах теплоты, преодолением энергетического барьера, связанного с образованием вокруг частиц двойных адсорбционных и ионных оболочек, прослоек среды повышенной вязкости. В технологии этот барьер нередко преодолевается наложением дополнительных механических воздействий на твердеющую систему.

В различных видах вяжущего вещества устанавливаются после отвердения системы определенные соотношения объемов кристаллической и аморфной фаз, которые под действием эксплуатационных факторов могут претерпевать отклонения как за счет дополнительного выделения новообразований, так и за счет упорядочения в расположении частиц стекловатой фазы с постепенным переходом ее в кристаллическое, в той или иной мере деформированное состояние.

К процессам структурообразования и сопутствующим им явлениям относятся также контракция и усадка, экзотермический и эндотермический эффекты, релаксации и ретардации.

Контракция состоит в самопроизвольном сжатии системы с уменьшением ее первоначального объема в основном в связи с образованием новых химических соединений, с переходом некоторой доли объемной жидкой среды в химически связанное состояние. Поскольку продукт реакции является, как правило, новой фазой микро- и макроструктуры, то возникающая пористость оказывает существенное влияние на качество этой материальной системы.

Усадка – уменьшение в объеме, которое происходит под влиянием сжимающих капиллярных сил, перехода твердых компонентов в жидкое состояние с последующим заполнением пор и пустот жидкой средой, испарения части жидкой среды или ее синерсзиса, снижения температуры, в том числе вследствие эндотермического эффекта. Общая усадка состоит из физической и химической усадок.

В отдельных материальных системах вместо усадки наблюдается разуплотнение с увеличением объема конгломерата или вяжущей части. Это явление происходит вследствие набухания, полиморфного превращения, химического или физико-химического присоединения большого количества жидкой среды с увеличением в объеме аморфных или кристаллических новообразований, расширения объема при повышении температуры, в частности за счет экзотермических эффектов.

В результате усадки и набухания, тем более повторяющихся в технологический период изготовления конгломерата или в эксплуатационный период, нередко возникают самопроизвольные напряжения в материале и, как следствие, образование микротрещин с возможным ухудшением физико-механических свойств строительных изделий. Различными приемами: регулированием режима отвердения, введением дополнительных компонентов в смесь и другими – удается уменьшить или полностью исключить влияние усадочных напряжений или деформаций, связанных с разуплотнением структуры.

Тепловые эффекты обусловлены химическими реакциями и физическими модификациями. Эндотермические эффекты возникают при разрушениях кристаллической решетки или испарении жидкости, полиморфных превращениях вещества. Экзотермические эффекты и реакции обусловливаются образованием новых фаз, сопровождаются поглощением газовой среды, переходом неустойчивого аморфного состояния в кристаллическое.

Релаксация и ретардация – соответственно процессы самопроизвольного снижения напряжения при фиксированной деформации и изменения деформации при фиксированном внутреннем напряжении. И то и другое происходит под влиянием перемещений атомов, ионов, молекул, отдельных звеньев молекулярных цепей. В структурообразовании ИСК эти спонтанные процессы имеют как положительное, так и отрицательное значение. Во всех случаях эти процессы и характеризующие их параметры учитываются в расчетах ползучести и прочности элементов строительных конструкций.