Смекни!
smekni.com

Строительство промышленного здания 2 (стр. 3 из 7)

в подкрановой части колонны, кроме силы Nп, приложенной с эксцентриситетом
е2=0,3 м действуют: расчетная нагрузка от веса подкрановой

балки и подкранового пути Nп.б.=120 кН с е4=0,4 м; расчетная нагрузка от
надкрановой части колонны Nкв=34,5 кН с эксцентриситетом е2=0,3 м;
расчетная нагрузка от стеновых панелей Nст=191 кН с эксцентриситетом
е3=0,75м.

Вычисляют реакцию верхнего конца колонны по оси А (левой) по формуле



Рис. 4. К определению реакций в колоннах от нагрузок.

Согласно принятому в расчете правилу знаков реакция, направленная вправо, положительна. Реакция правой колонны R2=5,2кН. Суммарная реакция связей в основной системе

Rip=ΣRi=-5,2+5,2=0 (при этом из канонического уравнения следует, что

Δ1=0).

Упругая реакция колонны по оси A:

Изгибающие моменты в сечениях колонны (нумерация сечений показана на рис.4,а) равны:

MI=M1=97,95 кНм; MII=Re1*Hв+M1=-5,2*4,4+97,95=75,15 кНм

МIII12=97,95-301,5=-203,55 кНм;

MIV=M1+M2+Re1*H=97,95-301,5+(-5,2*12,75)=-269,85 кНм

Продольные силы в левой колонне:

N1=NII=: Nп+Nкв=653+34,5=687,5 кН;

NIII=NII+Nст+Nп.б.= 687,5+191+120=998,5кН;

NIV=NIII+Nк=998,5+83=1081,5кН.

Поперечные силы: QIV=Re1=-5,2кН.

б) Усилия в колоннах поперечной рамы от снеговой нагрузки (рис.4,б).

Расчетная снеговая нагрузка Ns=47.9 кН действует с таким же эксцентриситетом e1=0,l5 м, что и постоянная нагрузка. Изгибающий момент в верхней части:

M1=Nsе1=47,9*0,15=7,2кН

В подкрановой части снеговая нагрузка с учетом смещения геометрических осей сечений подкрановой и надкрановой частей колонны с е2=0,3 м создает изгибающий момент:

М2=Nsе3=47,9*0,3= -14,4

Реакция верхнего конца колонны по оси A:

Для колонны по оси Б R2=-0,05 кН. Тогда суммарная реакция связей в

основной системе

Упругая реакция колонны по оси A Re1=R1=0,05 кН.

Изгибающие моменты в сечениях колонны:

MI=M1=7,2 кНм;

MII= Re1*Hв+M1=0,05*4,4+7,2=7,42 кНм

МIIIII2=7,2-14,4=-7,2;

MIV= M1+M2+Re1*H=7,2-14,4+0,05*12,75=-6,56 кН


Продольные силы в левой колонне:

NI=NII=NIII=NIV=47,9 кН.

Поперечная сила

QIV=Re1=0,05 кН.

в) Усилия в колоннах поперечной рамы от крановых нагрузок (рис. 4, в - е).

Рассматриваются следующие виды загружения;

- вертикальная крановая нагрузка Dmax на колонне по оси A, Dmin - на колонне по оси Б (рис. 4, в). На левой колонне сила Dmax=842,52 кН приложена с эксцентриситетом е4=0,4 м (аналогично эксцентриситету приложения нагрузки от веса подкрановой балки). Момент Mmax=Dmax e4=842,52*0,4=337 кНм

Реакция верхнего конца левой колонны:

Одновременно на правой колонне действует сила Dmin=248,24 кН с тем же эксцентриситетом е4=0,4м. При этом

Мmin=Dmin*e4=248,24*0,4=99,3 кНм

Реакция верхнего конца правой колонн:


Суммарная реакция в основной системе:

Rip=ΣRi=-18,58-5,75=-24,33кН

С учетом пространственной работы из канонического уравнения

где

при шаге рам 12 м и длине температурного блока 84 м.

Упругая реакция левой колонны

Изгибающие моменты в расчетных левой колонны:

МI=0; МII=Re1Hв=-15,1*4,4=-66,44 кНм

МIII=MII+Mmax= -66,44+337=270,56 кНм;

MIV=Re1H+Mmax=-15,1*12,75+337=144,5 кНм

Продольные силы:

NI=NII=0; NIII=NIV=842,52 кН.

Поперечные силы:

QIV= -Re1= -15,1 кН.

Упругая реакция правой колонны


Изгибающие моменты:

MI=0; MII=Re2Hв= -3,74*4,4=-16,4 кНм;

MIII=MII + Mmin=-16,4+99,3= 82,86 кНм;

MIV=Re2H+Mmin=-3,74*12,75+99,3=51,6 кНм.

Продольные силы:

NI=NII=0; NIII=NIV=Dmin=248,24 кН.

Поперечные силы:

QIV=Re2=-3,74 кН;

б) вертикальная крановая нагрузка Dmax на колонне по оси Б, Dmin на колонне по оси А (рис. 4, г). При действии нагрузки Dmin на колонну по оси А, а нагрузки Dmax на колонну по оси Б усилия в колонне по оси А равна усилиям в колонне Б в предыдущем загружении, но с обратным знаком.

в) горизонтальная крановая нагрузка Т на колонне по оси А слева направо и справа налево (рис. 4, д).

Реакция левой колонны от Тtr=31,3 кН

то же правой колонны R2=20,8.


Упругая реакция левой колонны:

Изгибающие моменты в сечениях колонны по оси А:

MI=0; MIIIII= Re1 Hв+Тhп.б=-17,8*4,4+31,6*1,4=-34,1 кНм;

MIV=Re1H+T(Hв+hп.б)=-17,8*12,75+31,6(8,35+1,4)=81,15 кНм.

Продольные силы:

NI=NII=0; NIII=NIV=0.

Поперечные силы:

QIV=Re1+Т= -17,8+31,6=13,8 кН;

При действии сил Т справа налево все усилия меняют знаки;

г) горизонтальная крановая нагрузка Т на колонне по оси Б слева направо и права налево (рис. 4, е). Тормозная сила Т действует на колонну по оси Б слева направо. Усилие в колонне по оси А равны усилиям в колонне по оси Б в предыдущем загружении и наоборот

При действии тормозных сил справа налево все усилия меняют знаки.

г) Усилия в колоннах поперечной рамы от ветровой нагрузки (рис. 4, ж,з).

Ветровая нагрузка действует слева направо. Реакция верхнего конца левой колонны от нагрузки wэ=2:


Реакция верхнего конца правой колонны от нагрузки wэ/=1,5:

Реакция связей от сосредоточенных сил W=3,3 кН и W/=2,5 кН

Сумма реакция в основной системе:

Rip=ΣRi=-13,73-10,3-3,3-2,5=-29,83

Из канонического уравнения

находят

(

определяется без учета пространственной работы каркаса).

Упругая реакция левой колонны:

Изгибающие моменты в сечениях левой колонны:

МI=0;

MIIIII= Re1Hв+wэHв2/2=1,19*4,4+2*4,42/2=24,6 кНм;

MIV=Re1H+wэH2/2=1,19*12,75+2*12,752/2=177,73 кНм

Поперечные силы:

QIV=Re1+wэH=24 кН.

Упругая реакция правой колонны:

Изгибающие момент в сечениях правой колонны:

МI=0;

MIIIII= Re2Hв+w/эHв2/2=4,62*4,4+1,5*4,42/2=34,85 кНм

MIV=Re2H+w/эH2/2=4,62*12,75+1,5*12,752/2=180,8 кНм

Продольные силы:

NI=NII=0; NIII=NIV=0.

Поперечные силы:

QIV=Re2+w/эH=4,62+1,5*12,75=20 кН.

Ветровая нагрузка действует справа налево. При этом усилия в колонне по оси А равны усилиям с обратными знаками в колонне по оси Б в предыдущем загружении и наоборот.

д) Расчетные сочетания усилий.

Значения расчетных усилий в сечениях колонны по оси А от разных нагрузок и их сочетаний, а также усилий, передаваемых колонной фундаменту, приведены ниже в табл. 2.

Рассмотрены следующие комбинации усилий: наибольший положительный момент Мmах и соответствующая ему продольная сила N, наибольший, отрицательный момент Мmin и соответствующая ему продольная сила N , наибольшая Nmax продольная сила и соответствующий ей изгибающий момент М. Кроме того для каждой комбинации усилий в сечении IV-IV вычислены значения поперечных сил Q, необходимых для расчета фундамента.