Смекни!
smekni.com

Расчет процессов в двигателе ВАЗ-2103 (стр. 6 из 8)

Определив ее значение, откладываем в правую сторону от точки О и обозначаем точкой О1. После этого с нового центра - точки O1 проводим лучи параллельные лучам 0-1, 0-2, 0-3, ...0-7 и обозначаем полученные точки пересечения с окружностью 1’,2’,3’ ,4’,5’,6’,7’ и соответственно лучи 0-1’, 0-2’, 0-3’, 0-4’, 0-5’, 0-6’ и 0-7’

Полученные точки на полуокружности со штрихом — 1', 2', 3'...7' теперь будут соответствовать значениям угла поворота коленчатого вала при использовании которых, изменение давления и объема в цилиндре будут соответствовать действительным и принимаем для определения действительных газовых сил.

Дальнейшая процедура перестройки индикаторной диаграммы давления газовых сил на поршень заключается в следующем. Продолжаем горизонтальную линию значения атмосферного давления Ро вправо. Отступив от рисунка индикаторной диаграммы 15-20 мм, обозначаем точкой «О» на линии атмосферного давления. Принимаем нанесенную линию за горизонтальную ось графика изменения давления по углу поворота коленчатого вала. Для этого через каждые 15 мм по горизонтальной оси наносим шкалу значений угла поворота коленчатого вала от нуля «0» через 30 градусов до 720 градусов п. к. в.; что соответствует двум оборотам коленчатого вала от ВМТ и длительности рабочего цикла.

По оси ординат из точки «0» проводим вертикальную линию и наносим шкалу изменения сил давления газов DРг. Масштаб сил давления газов сохраняем такой же, что и для индикаторной диаграммы представленной в координатах Р-V, начиная от линии Ро. После нанесения осей индикаторной диаграммы переходим к переносу точек и значений давления из индикаторной диаграммы представленной в координатах Р-V в координаты Р-f. Для этого, поочередно начиная с точки 1' и далее 2', 3', 4', ...7', проводим вертикальную линию вверх до пересечения с линией изменения давления на индикаторной диаграмме в координатах Р-V и переносим его значение по горизонтали до пересечения с вертикальной линией соответствующих значений угла поворота коленчатого вала. Из точки 1' проводим линию вверх до пересечения с линией индикаторной диаграммы и проводим горизонтальную линию до пересечения с ординатой соответствующей положению поршня в ВМТ и нулю градусов п. к. в.. Далее из точки 2', соответствующей 30о п.к.в., из точки 3', соответствующей 60о п.к.в., и т.д. переходим к следующим точкам до значения 720о п.к.в. и переносим значения давления соответствующие определенному положению коленчатого вала по углу его поворота. Соединив полученные точки изменения давления, соответствующие каждому значению угла поворота коленчатого вала, получим развернутую индикаторную диаграмму удельных газовых сил действующих на поршень по углу поворота коленчатого вала за рабочий цикл от 0о п.к.в. до 720о п.к.в..

Для определения численных значений газовых сил действующих на поршень, определяем путем расчетов или прямым измерением значения ординаты DРг для каждого положения поршня и угла поворота коленчатого вала и заносим в общий массив исходных для определения численного значения суммарных сил действующих в КШМ (таблица 6).

Численное значение удельной газовой силы действующей на каждый момент положения коленчатого вала определится как произведение

(97)

где Yi - текущее значение ординаты давления для каждого положения коленчатого вала через 30о п.к.в., принимаем из массива измерений ординат исходных данных, в мм.

mр - масштаб давления газов, МПа/мм.

Удельную силу инерции Pj для возвратно-поступательно движущихся масс определяем по зависимости:

(98)

Значение выражения

остается постоянным для заданного расчетного режима по частоте вращения коленчатого вала w=const. Определим это значение. Тогда текущее значение Pj будет изменятся только в зависимости от положения поршня и угла поворота коленчатого вала согласно тригонометрической зависимости (cosj + lcos 2j) (см. таблицу 6).

Выполнив математические действия для определения Pj, значения заносим в таблицу расчетных данных (таблица 6). Переносим значения удельных сил инерции возвратно-поступательно движущихся масс на график где представлена индикаторная диаграмма газовых сил в координатах P – φ.

Суммарная удельная сила PS, приложенная в центре поршневого пальца такого механизма, равна для каждого данного угла поворота кривошипа сумме удельных сил давления газов DРг и сил инерции Pj:

; МПа. (99)

Просуммировав значения

для каждого значения угла п.к.в., заносим в таблицу расчетных данных и наносим на график изменения PS= f(j) на поле, где представлены графики DРг=f(j) и Pj=f(j). Значения суммарной удельной силы будут использованы для определения других сил действующих в элементах и узлах КШМ.

Суммарная удельная сила РS приложенная к оси поршневого пальца, раскладывается на две составляющие силы:

- боковую силу PN, действующую в направлении стенки цилиндра перпендикулярно оси поршневого пальца и вертикальной плоскости стенки;

- продольную силу PS, действующую в направлении продольной оси шатуна.

Текущее значение боковой силы PN=f(j) определяем из зависимости:


; МПа. (100)

Текущее значение силы PS=f(j) определяем из зависимости:

; МПа. (101)

Результаты расчетов заносим в таблицу 6 расчетных данных. По результатам расчетов строим графики изменения удельных боковой и продольной сил по углу поворота коленчатого вала.

Продольная, сила РS, перенесенная по линии ее действия в центр шатунной шейки коленчатого вала распределяется на нормальную силу РК, действующую по оси радиуса кривошипа и тангенциальную силу РТ, действующую по касательной к окружности радиуса кривошипа и перпендикулярно оси кривошипа, создавая крутящий момент.

Текущее значение нормальной силы РK=f(j) определяем из зависимости:

; МПа. (102)

Текущее значение тангенциальной силы РТ=f(j) определяем из зависимости:

; МПа. (103)

Результаты расчетов заносим в таблицу расчетных данных. По результатам расчетов строим графики изменения удельных сил РK=f(j) и РТ=f(j) по углу поворота коленчатого вала.

Центробежная сила вращающихся масс кривошипно-шатунного механизма всегда направлена по радиусу кривошипа, постоянна по величине, противоположно направлена положительной нормальной силе и приложена к центру В шатунной шейки кривошипа. Ее значение зависит от значения радиуса кривошипа Rкр значения угловой скорости и массы вращающихся деталей mR. В состав массы вращающихся деталей относятся - масса части шатунной группы отнесенной к вращающимся массам и принятая масса колена с шатунной шейкой и щеками кривошипа. Таким образом, mR складывается как сумма:

(104)

Значения центробежной удельной силы от вращающихся масс определяем из зависимости:

(105)

Центробежная сила инерции вращающихся масс шатуна равна:

(106)

Центробежная сила инерции вращающихся масс кривошипа равна:

(107)

3.4 Определение суммарного крутящего момента на коленчатом валу

двигателя

Тангенциальная сила РТ, действующая по касательной к окружности вращения центра шатунной шейки, всегда перпендикулярна радиусу кривошипа. Если перенести реактивную силу от силы РТ в центр коренной шейки коленчатого вала, образуется пара сил создающая крутящий момент Мкрц на валу шатунной шейки двигателя.

(108)

Rкр - величина постоянная, в м.

Таким образом, график изменения тангенциальной силы РТ за рабочий цикл от нуля градусов до 720 градусов п. к. в. представляет собой и график изменения крутящего момента для одного цилиндра по углу поворота коленчатого вала, в своем масштабе.

Вычислив значения Мкрц для каждого положения коленчатого вала через 30 градусов п. к. в. его значения заносим в таблицу 6 результатов расчета.

Для построения кривой суммарного крутящего момента Мкр многоцилиндрового двигателя необходимо выполнить суммирование кривых крутящих моментов каждого цилиндра.

Так как для всех цилиндров значения сил и характер крутящего момента одинаковы и отличаются только тем, что рабочий цикл, а соответственно, и кривая крутящего момента, смещены на величину интервала между вспышками в отдельных, цилиндрах, то для определения значений и характера изменения суммарного момента, в пределах интервала повторения, достаточно иметь значения и кривую крутящего момента одного цилиндра.