Смекни!
smekni.com

Техническая эксплуатация автомобилей Основы обеспечения (стр. 4 из 31)

При увеличении скорости скольжения коэффициент трения резины о сталь сначала растет, а затем уменьшается. Наиболее сильно это выражено для сухого трения (рис. 1.17).

Рис. 1.15. Зависимость коэф- Рис. 1.16. Зависимость коэффициента /трефициента / трения резины ния резины о сталь от температуры о сталь от удельного давления в контакте

17

О 0,2 0,4 0,6 0,8 1,0 V, М/С

При длительных остановках

Рис. 1.17. Зависимость коэффициента/ трения резины от скорости сколь-

Трение в масле

жения

Из рассмотренных графиков можно понять насколько разнообразно могут вести себя резиновые детали автомобиля в процессе его эксплуатации (уплотнители с утра могут скрипеть, а в середине дня скрип может исчезнуть и т.п.).

В качестве примера можно рассмотреть изменение свойств используемого в двигателе автомобилей ВАЗ демпфера крутильных колебаний, содержащего резиновый гасящий элемент. По результатам заводских испытаний при температуре 34 "С демпфер имеет резонансную частоту 357 Гц, а по мере увеличения температуры до 60 °С частота плавно уменьшается и становится равной 293 Гц. Интересно, что по мере работы автомобиля (после 118 тыс. км) собственная частота демпфера крутильных колебаний практически не меняется, а такой же демпфер после восьми месяцев хранения (без использования) увеличил частоту собственных колебаний почти на 10 %. Естественно, что изменение резонансных частот демпфера будет менять вибрационные характеристики автомобиля в целом.

Воздействие биологических факторов имеет важное значение, так как в состав многих материалов, используемых в конструкции автомобилей, входят органические вещества, которые в процессе эксплуатации автомобиля могут подвергаться воздействию микроорганизмов. К таким материалам относятся органические добавки к смазочным маслам и консистентным смазкам, герметизирующие прокладки, фильтрующие элементы, компоненты изоляции проводов, текстолитовые и гетинаксовые панели электроприборов и т.д.

Наиболее опасным среди биологических факторов является воздействие плесневых грибов на изоляционные материалы, приводящее к уменьшению их прочностных свойств и диэлектрических характеристик. Поражение плесенью часто начинается на хлопчатобумажной оплетке пучка проводов при попадании на оплетку воды и отсутствии условий для ее быстрого высыхания. Затем плесень распространяется и на провода с лакошелковой изоляцией. В пораженных плесенью электронных приборах, имеющих печатные платы, возможны нарушения электрических соединений. Воздействие выделяемых плесенью и другими микроорганизмами органических кислот ускоряет коррозию электрических контактов. Весьма существенными могут быть воздействия микроорганизмов на текстильные материалы обивки кузова, приводящие к изменению их внешнего вида и появлению неприятных запахов.

1.2.2. Процессы изменения геометрии деталей

На эксплуатационные характеристики автомобиля могут оказывать влияние любые изменения геометрии деталей: размеров, формы, взаимного расположения и шероховатости поверхностей. Рассмотрим наиболее характерные процессы изменения геометрии деталей.

Пластическая деформация деталей наблюдается при создании в материале детали напряжений, превышающих пределы текучести — от или временный предел прочности — ав (аналогично и по касательным напряжениям). При эксплуатации автомобилей объяснение причин пластических деформаций деталей обычно не вызывает затруднений (всем понятно, почему изогнулся бампер, если автомобиль наехал на столб).

На рис. 1.18 показан шатун, подвергшийся деформации после обрыва шатунного болта, крепящего крышку.

На рис. 1.19 показан поршень, разрушившийся при перегрузках, возникших вследствие попадания в цилиндр охлаждающей жидкости, которая в момент запуска двигателя оказалась «запертой» клапанами в цилиндре. Удар поршня о несжимаемую жидкость привел к разрушению поршневого пальца и поршня.

Рис. 1.18. Шатун, подвергшийся пластической деформации

Рис. 1.19. Пример механического разрушения поршня при работе двига теля

Релаксация напряжений — это процесс изменения геометрии детали за счет ползучести материала под действием внутренних напряжений, которые часто остаются в детали после ее изготовления (при гибке, штамповке, литье, механической обработке и т.д.).

Правильно разработанный и исполненный технологический процесс изготовления детали исключает деформацию детали за счет релаксации напряжений, превышающую допуск на размеры. Однако нарушение процесса может приводить к скрытым дефектам, которые обнаруживаются только спустя много времени уже при эксплуатации автомобиля.

Температурное расширение — это процесс увеличения линейных и объемных размеров конструкционных материалов при повышении их температуры.

С учетом этого явления, например, поршень при комнатной температуре должен иметь овальную форму дниша и коническую боковую поверхность, что обеспечивает образование правильной цилиндрической формы, когда поршень нагрет до рабочей температуры. Следует учитывать изменение зазоров в сопряжениях деталей автомобиля при их нагреве, так как при перегреве может происходить заклинивание деталей, а в некоторых случаях зазоры в сопряжениях увеличиваются. Все это влияет на эксплуатационные характеристики автомобиля.

На рис. 1.20 показан поршень, разрушившийся при перегреве двигателя и заклинивании поршневых колец с головкой поршня в цилиндре. Поршень оборвался по плоскости отверстий для пропуска масла, снимаемого маслосъемным кольцом. Поверхность разрушения имеет характерные забоины, возникшие при ударах движущегося поршня о свою оторванную часть. При этом ото-

Рис. 1.20. Поршень после заклини- Рис. 1.21. Головка разрушенного

вания его головки в цилиндре и по- поршня

следующего разрушения рванная головка поршня ударами о поршень, головку блока цилиндра и его стенки может быть деформирована до формы комка (рис. 1.21).

Специфическим вариантом температурного расширения является фрикционное растрескивание. Это явление обычно наблюдается на чугунных трущихся деталях: нажимных дисках сцепления, маховиках, тормозных барабанах и дисках (рис. 1.22).

Трещины возникают вследствие накопления в поверхностном слое растягивающих напряжений, которые образуются следующим образом. При трении шероховатой и волнистой поверхности контакт происходит по выступам (рис. 1.23), которые нагреваются до пластичного состояния (всем известен процесс сварки трением). Прилегающие к точкам контакта зоны тоже нагреваются, вследствие этого металл расширяется и вдвигается в податливую пластичную зону, поскольку холодная зона оказывает большое сопротивление сдвигам. После завершения трения пластичные зоны застывают, а остывающий металл нагретых зон сжимается, но поскольку застывшая пластичная зона не позволяет ему свободно занять свое прошлое пространство, в поверхности детали образуются растягивающие напряжения. С тече-

Рис. 1.22. Фрикционное растрескивание

нажимного диска сцепления

21


стящей. Следует отметить, что профиль поверхности трения не воспроизводится ни при каком виде механической обработки. Рис. 1.25. Ось дифференциала, раз-

Износ второго рода (тепловой рушенная задиром в сопряжении износ, задир) — это процесс сва- с сателлитами ривания больших участков трущихся поверхностей, сопровождающийся наволакиванием металла, образованием рисок. Такой износ наблюдается при ненормальных условиях трения: больших давлениях и скоростях скольжения, повышенной температуре. Интенсивность износа очень большая, износ может наблюдаться как при скольжении, так и при качении.

На рис. 1.25 показана ось дифференциала переднеприводного автомобиля ВАЗ, имеющая задир в сопряжении с сателлитами, возникший при интенсивном буксовании автомобиля вперед и назад, что привело к полному разрушению оси. На рис. 1.26 и 1.27 показаны коленчатый вал и вкладыш подшипника со следами задира трущихся поверхностей.

На рис. 1.28 и 1.29 показаны наружная и внутренняя обоймы двухрядного самоустанавливающегося подшипника с задиром, причиной которого явилась неправильная сборка (отсутствие осевого зазора и заклинивание шариков при малом угле сферической поверхности наружной обоймы).

Рис. 1.26. Задир шейки коленчатого Рис. 1.27. Задир рабочей вала двигателя вкладыша

Рис. 1.28. Задир наружной обоймы двухрядного подшипника качения

Окислительный износ — это процесс образования на поверхности трения окисных пленок, более твердых и хрупких, чем основной металл. Такая пленка на относительно мягкой подложке под действием нагрузок в зоне контакта трущихся тел то разрушается, то вновь образуется и т.д. Окислы выбрасываются из зоны трения, геометрия детали меняется по аналогии с тем, как колеса автомобиля выбрасывают замерзающие на луже льдинки, и образуется колея. Интенсивность окислительного износа низкая (нормальная), поверхность трения гладкая, блестящая.