Смекни!
smekni.com

Гидравлика 2 (стр. 6 из 21)

где

– координата центра тяжести площади
.

Аналогично получим

, (62)

где

– площадь проекции криволинейной поверхности на плоскость, нормальную оси y.

Таким образом, чтобы вычислить горизонтальную проекцию

силы весового давления на криволинейную поверхность, следует площадь проекции
этой поверхности на плоскость, нормальную к рассматриваемой горизонтальной оси, умножить на давление в центре тяжести площади
.

Проекция силы весового давления на вертикальную ось определится соотношением

, (63)

где

– проекция на плоскость х0у поверхности S.

Последний интеграл представляет собой объем тела

, ограниченного поверхностью S, цилиндрической боковой поверхностью
с вертикальными образующими и проекцией
криволинейной поверхности S на свободную поверхность жидкости. Это тело называется телом давления, а величина
есть вес жидкости в его объеме.

Таким образом, вертикальная проекция силы весового давления на криволинейную поверхность равна весу жидкости в объеме тела давления.

Величина

силы
определится формулой

, (64)

а направление линии ее действия – направляющими косинусами

;
;
. (65)

Если

,
и
пересекаются в одной точке, то система сводится к силе давления, проходящей через эту точку.

Возможны два случая расположения криволинейной поверхности (рис. 10 а и б) под уровнем жидкости. В первом случае жидкость расположена над твердой поверхностью; тело давления заполнено жидкостью и считается положительным, а вертикальная составляющая силы направлена вниз. Во втором случае тело давления не заполнено жидкостью и считается отрицательным; вертикальная сила давления направлена вверх.

Если криволинейная поверхность S замкнута и полностью погружена под уровень абсолютно покоящейся жидкости (рис. 11), то воздействие жидкости сводится к одной вертикальной силе. Действительно, для любой горизонтальной оси существуют две противоположно направленные и равные по величине силы, действующие на тело; поэтому результирующая горизонтальных сил равна нулю. Чтобы найти вертикальную силу, проектируем S на свободную поверхность жидкости. Проектирующие вертикали отметят на поверхности тела замкнутую линию l, которая делит поверхность на две части

и
. Для верхней части
тело давления положительно и соответствующая ему сила направлена вертикально вниз, а для нижней
– тело давления отрицательно и сила направлена вверх. Обозначив объемы этих тел давления соответственно через
и
, найдем величину результирующей вертикальной силы А:

, (66)

где

– объем тела.

Таким образом, сила давления покоящейся жидкости на погруженное в нее тело направлена вертикально вверх и равна весу жидкости в объеме тела. Этот результат составляет содержание закона Архимеда: сила А называется архимедовой или гидростатической подъемной силой. Если G – вес тела, то его плавучесть определяется соотношением сил А и G. При

тело тонет, при
– всплывает, при G = А – плавает в состоянии безразличного равновесия. Следует иметь в виду, что линии действия сил G и А могут не совпадать, так как линия действия веса G проходит через центр тяжести тела, а линия действия архимедовой силы А – через центр его объема. При неравномерном распределении плотности тела может появиться момент, способствующий опрокидыванию тела.

В заключение отметим, что сила давления жидкости по криволинейной поверхности в случаях относительного покоя может быть определена общим способом суммирования элементарных сил давления, применительно к заданной форме поверхности и условиям относительного покоя.

2. ГИДРОДИНАМИКА

2.1 Основные понятия гидродинамики

Основныеэлементыдвиженияжидкости. Причинами движения жидкости являются действующие на нее силы: объемные или массовые силы (сила тяжести, инерционные силы) и поверхностные силы (давление, трение). В отличие от гидростатики, где основной величиной, характеризующей состояние покоя жидкости, является гидростатическое давление, которое определяется только положением точки в пространстве, т.е.

,в гидродинамике основными элементами, характеризующими движение жидкости, будут два: гидродинамическое давление и скорость движения (течения) жидкости.

Гидродинамическое давление р – это внутреннее давление. развивающееся при движении жидкости. Скорость движения жидкости в данной точке и – это скорость перемещения находящейся в данной точке частицы жидкости, определяемая длиной пути l, пройденного этой частицей за единицу времени t.

В общем случае основные элементы движения жидкости р и и для данной точки зависят от ее положения в пространстве (координат точки) и могут изменяться во времени. Аналитически это положение гидродинамики записывается так:

,

.

Задачей гидродинамики и является определение основных элементов движения жидкости р и u, установление взаимосвязи между ними и законов изменения их при различных случаях движения жидкости.

Траекториячастицы.Если в массе движущейся жидкости взять какую-либо частицу жидкости и проследить ее путь за какой-то промежуток времени

(конечный, достаточно большой), то можно получить некоторую линию, выражающую геометрическое место этой точки в пространстве за время
.

Линиятока.Если в массе движущейся жидкости в данный момент времени t взять какую-либо точку 1(рис. 12), то можно в этой точке построить вектор скорости и1, выражающий величину и направление скорости движения частицы жидкости в данной точке 1в этот момент времени.

В тот же момент времени tможно взять и другие точки в движущейся жидкости, например, точки 2, 3, 4,. .....в которых также можно построить векторы скоростей u2,u3, и4,… выражающие скорость движения других частиц жидкости в тот же момент.

Можно выбрать точки 1, 2, 3, 4. . . и провести через них плавную кривую, к которой векторы скоростей будут всюду касательны. Эта линия и называется линией тока.

Таким образом, линией тока называется линия, проведенная через ряд точек в движущейся жидкости так, что в данный момент времени векторы скорости частиц жидкости, находящихся в этих точках, направлены по касательной к этой линии. В отличие от траектории, которая показывает путь движения одной частицы жидкости за определенный промежуток времени

, линия тока соединяет разные частицы и дает некоторую мгновенную характеристику движущейся жидкости в момент времени t. Через заданную точку в данный момент времени можно провести только одну линию тока.