Кореляційний аналіз урожайності зернових культур (стр. 1 из 5)

КАБІНЕТ МІНІСТРІВ УКРАЇНИ

Національний університет біоресурсів і природокористування України

Кафедра статистики та економічного аналізу

Курсова роботаз статистики на тему:

«Кореляційний аналіз урожайності зернових культур»

Київ – 2009

План курсової роботи

Вступ

Розділ 1. Аналіз простої лінійної кореляції

1.1 Теоретичні основи аналізу простої лінійної кореляції

1.2 Аналіз регресії

1.2 Оцінка тісноти зв’язку

Розділ 2. Аналіз простої нелінійної кореляції

2.1 Теоретичні основи аналізу нелінійної кореляції

2.2 Аналіз регресії та оцінка тісноти зв’язку

Розділ 3. Аналіз урожайності зерновиз культур методом множинної кореляції

3.1 Теоретичні основи множинної кореляції

3.2 Аналіз регресії

3.3 Оцінка тісноти зв’язку

Розділ 4. Непараметрична кореляція

Висновки

Список використаної літератури


ВСТУП

Зернові культури мають найвищу питому вагу в структурі посівних площ і валових зборів сільськогосподарських культур. Це пояснюється їх винятковим значенням та різнобічним використанням. Але зараз ми бачимо як різко скорочуються посівні площі. Для порівняння, в 1985 р. під посівами сільськогосподарських культур було зайнято 32656 тис. га, а в 1995 р. – лише 30963 тис. га. Також скорочуються площі з яких було зібрано урожай зернових в 1985 р. 16064 тис. га, а в 1995 р. – 13963 тис. га.

Розвиток та підвищення економічної ефективності зернового господарства є необхідна умова не тільки забезпечення населення продуктами харчування, а й підвищення ефективності виробництва інших видів продукції сільського господарства.

Концепція розвитку зернового господарства України передбачає суттєве збільшення виробництва зерна на основі неухильного підвищення урожайності зернових культур, структурної перебудови зернового господарства з метою забезпечення внутрішніх потреб у зернових та перетворення України з імпортера в експортера зерна.

Інтенсифікація сільського виробництва, яка здійснювалась головним чином шляхом хімізації, меліорації та механізації, несла значне зменшення ручної праці. Поряд з цим інтенсифікація виробництва, а з нею і великі витрати ресурсів, зумовили цілий ряд негативних явищ у землеробстві, які насамперед привели до погіршення структури земельних ресурсів, посилення ерозійних процесів, зниження родючості ґрунту в усіх його проявах, забруднення агрохімікатами, пестицидами, тощо. Тому сьогодні як ніколи нам потрібно бережно відноситись до землі. Вводити нові технології тільки тоді, коли ми впевнені, що не зробимо гірше. Інтенсивне і надмірне зрошення приводить до розчинення у підґрунті солей лужних металів, які внаслідок зрошення поступають у грунт і засолюють його.

Урожайність зернових культур в 1995 році знизилась на 10,8 ц/га в порівнянні з 1985 роком (35,1 ц/га), і становила 24,3 ц/га.

Основним шляхом збільшення валових зборів продукції рослинництва є підвищення врожайності сільськогосподарських культур, яке можливо досягти тільки при впровадженні інтенсивних технологій.

У зв’язку з тим, що на результат сільського господарства впливає багато факторів, керівник або спеціаліст сільськогосподарського підприємства повинен вчасно виявляти та правильно аналізувати статистичну інформацію про залежність результату від факторів і є ціллю цієї роботи.

Отже метою курсового проекту показати взаємозв’язок і залежність урожайності зернових культур, від кількості внесених органічних добрив і якості ґрунтів. Кількісне відображення взаємозв’язку через систему показників являється завданням курсового проекту.

Розділ 1. Аналіз простої лінійної кореляції

1.1 Теоретичні основи аналізу простої лінійної кореляції

Важливим завданням статистики є розробка методів вивчення економічних, біологічних, технічних закономірностей, яким підпорядковане виробництво, їх кількісної та якісної сторін. Із цією метою широко використовують кількісні методи статистико-економічного аналізу, зокрема кореляційний. За допомогою кореляційного методу взаємозв’язок між явищами фіксують аналітично у вигляді математичних виразів, які відображають взаємозв’язки факторних і результативних ознак.

Кореляційний метод широко використовують в економічному аналізі різних галузей народного господарства; успішно він застосовується і в сільському господарстві.

Кореляційний метод дозволяє одержати кількісні характеристики ступеня зв’язку між двома або кількома ознаками, а тому дає більш розширене уявлення про зв’язок між ними. Водночас, слід відзначити, що кореляційний метод не встановлює причинних зв’язків між досліджуваними явищами, а констатує їх наявність чи відсутність.

Щоб зрозуміти суть явищ, необхідно розкрити їх взаємозв’язки, кількісно виміряти вплив тих чи інших об’єктивних та суб’єктивних факторів. До того ж будь-яке суспільне явище не можна усвідомити і зрозуміти без обґрунтування його зв’язків з іншими явищами або окремими їх ознаками. Ці зв’язки досить різноманітні. Причому одні ознаки виступають у ролі факторів, які діють на інші, зумовлюючи їх зміни, інші – в ролі результатів дії цих факторів. Перші з них називають факторними ознаками, другі – результативними.

Досить значна різноманітність зв’язків суспільних явищ потребує групування у певні типи та форми за їх істотними рисами і властивостями, тобто класифікації. У статистиці в основу класифікації зв’язків покладено принцип відмінності і подібності їх за такими особливостями: напрям, ступінь тісноти, аналітичний вираз, одиничність і множинність факторів та наслідків. Виходячи з цього розрізняють зв’язки функціональні (повні) і кореляційні (нерівні); прямі та обернені; прямолінійні і криволінійні; однофакторні і багатофакторні (множинні).

Кореляція – це залежність між випадковими величинами, що не має суворого функціонального характеру, при якій зміна однієї випадкової величини зумовлює зміну математичного очікування іншої.

Кореляційний зв’язок – це такий зв’язок між ознаками суспільно-економічних явищ, при якому на величину результативної ознаки, крім факторної, впливають багато інших ознак, що діють у різних напрямах одночасно або послідовно. Кореляційний зв’язок виявити лише у вигляді загальної тенденції при масовому зіставлення факторів. Його особливістю є те, що кожному значенні факторної ознаки відповідає не одне певне значення результативної, а ціла їх сукупність.

Кореляційний аналіз (кореляційний метод) – метод дослідження взаємозалежності ознак у генеральній сукупності, які є випадковими величинами з нормальним характером розподілу. Кореляційний аналіз вирішує такі завдання:

оцінку параметрів нормально розподіленої генеральної сукупності (генеральних середніх, дисперсій, парних коефіцієнтів кореляції, множинних і окремих коефіцієнтів кореляції);

перевірку істотності оцінюваних параметрів та одержання інтервальних оцінок для визначення істотних серед них;

виявлення структури взаємозалежності ознак.

Крім завдань існує декілька передумов кореляційного аналізу:

чітке уявлення про причинно-наслідкові зв’язки досліджуваних ознак;

достатня варіація досліджуваних ознак, оскільки без варіації не можна виявити зв’язків;

однорідність досліджуваної сукупності;

ознаки повинні мати кількісний або числовий вираз, навіть для атрибутивних ознак.

Вивчення взаємозв’язків кореляційного типу має велике значення, особливо при аналізі явищ, які складаються під впливом значної кількості факторів.

За математичними особливостями кореляційні залежності можуть бути додатними і від’ємними, прямолінійними та криволінійними, простими і множинними.

За формою кореляційна залежність буває прямолінійною і криволінійною, а за напрямом – прямою (додатною) та оберненою (від’ємною). Коли визначається зв’язок між двома ознаками, кореляція називається простою (парною); якщо ж ознака розглядається як результат впливу кількох факторів – множинною.

Під прямолінійним розуміють зв’язок, який описується рівнянням прямої лінії. Криволінійним називають зв’язок, що описується рівнянням будь-якої кривої лінії (парабола, гіпербола, логарифмічна крива та ін.).

Прямим називають такий зв’язок, при якому зі збільшенням (чи зменшенням) факторної ознаки збільшується (чи зменшується) результативна.

Оберненим називають зв’язок, при якому значення результативної ознаки змінюється в протилежному напрямі щодо зміни значень факторної: зі збільшенням останньої значення результативної ознаки зменшується і навпаки.

Залежно від форми зв'язку між факторною і результативною ознаками вибирають тип математичного рівняння, за допомогою якого визначають характеристики кореляційного аналізу. Прямолінійну форму зв'язку визначають рівнянням прямої лінії


,

де ух — теоретичні (обчислені за рівнянням регресії) значення результативної ознаки;

а0 — початок відліку, або значення yx при умові, що х = 0 ;

а1 — коефіцієнт регресії (коефіцієнт пропорційності), який показує, як змінюється ух при кожній зміні х на одиницю;

х — значення факторної ознаки.

При прямому зв'язку між корелюючими ознаками коефіцієнт регресії має додатне значення, при зворотному — від'ємне.

Параметри а0 і а1 рівняння регресії обчислюють способом найменших квадратів. Суть цього способу в знаходженні таких параметрів рівняння зв'язку, при яких залишкова сума квадратів відхилень фактичних значень результативної ознаки (y ) від її теоретичних (обчислених за рівнянням зв'язку) значень ( ) буде мінімальною


Copyright © MirZnanii.com 2015-2018. All rigths reserved.