Смекни!
smekni.com

Математические методы исследования операций в экономике (стр. 36 из 37)

Многие модели управляемых систем основаны на аппарате дифференциальных уравнений как в обыкновенных, так и в час­тных производных. При исследовании систем с распределенны­ми параметрами, в зависимости от вида используемых диффе­ренциальных уравнений в частных производных, выделяют такие типы задач оптимального управления, как параболиче­ские, эллиптические или гиперболические.

Рассмотрим два простейших примера задач управления эко­номическими объектами.

Задача распределения ресурсов. Имеется т складов с номерамиi (i∊1:m), предназначенных для хранения однородно­го продукта. В дискретные моменты времениt∊0:(T-l) проис­ходит его распределение между объектами-потребителями (клиентами) с номерами j, j∊1:n. Пополнение запаса в пунктах хранения продукта в t-й момент времени определяется величи­намиait, i∊1:m, а потребности клиентов в нем равняются bjt, j∊1:n. Обозначим черезcti,j — затраты на доставку единицы продукта из i-го склада j-му потребителю в момент времениt.Также предполагается, что продукт, поступивший на склад в момент t, может быть использован, начиная со следующего мо­мента (t+l). Для сформулированной модели ставится задача найти такой план распределения ресурсов {хti,j}Tmxn, который минимизирует суммарные расходы на доставку потребителям продукции со складов в течение полного периода функциониро­вания системы.

Обозначив через хti,j количество продукта, поставляемое j-му клиенту с i-го склада в t-й момент времени, а через zti — общее количество продукта на i-м складе, описанную выше про­блему можно представить как задачу нахождения таких сово­купностей переменных

которые обращают в минимум функцию

при условиях

где объемы начальных запасов продукта на складах z0i =ži. пред­полагаются заданными.

Задачу (6.20)-(6.23) называют динамической транспорт­ной задачей линейного программирования. С точки зрения приведенный выше терминологии независимые переменные хti,j представляют собой параметры управления системой, а зави­сящие от них переменные zti — совокупность параметров состояния системы в каждый момент времениt. Ограничения zti ≥ 0 гарантируют, что в любой момент времени с любого скла­да не может быть вывезен объем продукта, превышающий его фактическое количество, аограничения (6.21) задают правила изменения этого количества при переходе от одного периода к другому. Ограничения данного вида, которые задают условияна значения параметров состояния системы, принято называть фазовыми.

Отметим также, что условие (6.21) служит простейшим при­мером фазовых ограничений, поскольку связываются значения параметров состояния для двух смежных периодов t иt+l. В общем случае может устанавливаться зависимость для груп­пы параметров, принадлежащих нескольким, возможно не­смежным, этапам. Такая потребность может возникнуть, на­пример, при учете в моделях фактора запаздывания поставок.

Простейшая динамическая модель макроэкономики. Представим экономику некоторого региона как совокупность п отраслей (j∊1:п), валовой продукт которых в денежном вы­ражении на некоторый момент t может быть представлен в виде вектора zt=(zt1 , zt2 ,..., ztn), где t∊0:(Т-1). Обозначим через At матрицу прямых затрат, элементы которой ati,j, отражают затра­ты продукции i-й отрасли (в денежном выражении) на изготов­ление единицы продукции j-й отрасли в t-й момент времени. Если Xt = ║xti,jnxm — матрица, задающая удельные нормы продукции i-й отрасли, идущей на расширение производства в j-й отрасли, а уt =(уt1, уt2 ,..., уtn) — вектор объемов продукции от­раслей потребления, идущей на потребление, то условие рас­ширенного воспроизводства можно записать как

где z0 =ž — исходный запас продукции отраслей предполагает­ся заданным и

В рассматриваемой модели величиныzt являются парамет­рами состояния системы, а Xt — управляющими параметрами. На ее базе могут быть поставлены различные задачи, типичным представителем которых является задача оптимального вывода экономики на момент Т к некоторому заданному состояниюz*. Данная задача сводится к отысканию последовательности управляющих параметров

удовлетворяющих условиям (6.24)-(6.25) и минимизирующих функцию

6.2.2. Простейшая задача оптимального управления. Один из приемов, применяемых для решения экстремальных задач, состоит в выделении некоторой проблемы, допускающей относительно несложное решение, к которой в дальнейшем могут быть сведены остальные задачи.

Рассмотрим так называемую простейшую задачу управле­ния. Она имеет вид

Специфика условий задачи (6.27)-(6.29) состоит в том, что функции качества управления (6.27) и ограничения (6.28) яв­ляются линейными относительно zt, в то же время функция g(t,хt), входящая в (6.28), может быть произвольной. Послед­нее свойство делает задачу нелинейной даже приt=1, т. е. в статическом варианте.

Общая идея решения задачи (6.27)-(6.29) сводится к ее «расщеплению» на подзадачи для каждого отдельно взятого момента времени, в предположении, что они успешно разреши­мы. Построим для задачи (6.27)-(6.29) функцию Лагранжа

где λt —вектора множителей Лагранжа (t∊0:Т). Ограничения (6.29), носящие общий характер, в функцию (6.30) в данном случае не включены. Запишем ее в несколько иной форме

Необходимые условия экстремума функции Ф(х, z, λ) по со­вокупности векторов zt задаются системой уравнений

которая называется системой для сопряженных перемен­ных. Как можно заметить, процесс нахождения параметров λt в системе (6.32) осуществляется рекуррентным образом в об­ратном порядке.

Необходимые условия экстремума функции Лагранжа по переменным λt будут эквивалентны ограничениям (6.28), и, наконец, условия ее экстремума по совокупности векторов хtХt, t∊1:(Т-1) должны быть найдены как результат реше­ния задачи

Таким образом, задача поиска оптимального управления сво­дится к поиску управлений, подозрительных на оптимальность, т. е. таких, для которых выполняется необходимое условие оп­тимальности. Это, свою очередь, сводится к нахождению таких

t,
t,
t, удовлетворяющих системе условий (6.28), (6.32), (6.33), которая называется дискретным принципом максиму­ма Понтрягина.

Справедлива теорема.

Теорема 6.2. Совокупность векторов
t,
t,
t, удов­летворяющих системе (6.28), (6.32), (6.33), образует седловую точку функции Ф(х, z, λ) (6.30), т. е. при лю­бых допустимых х, z, λ выполняются неравенства

Доказательство.

Пусть

t,
t,
t,удовлетворяют системе (6.28), (6.32), (6.33). Тогда из (6.31) и (6.32) следует, что

и поскольку

t удовлетворяет (6.33), то