Смекни!
smekni.com

Моделирование систем массового обслуживания (стр. 3 из 13)

Pk(t)=( λt)k/ k! *e-λ t,

где λ - интенсивность поступления потока заявок, среднее число событий в СМО за единицу времени, например[чел/мин; руб./час; чеков/час; докум./день; кг./час; т./год] .

Для такого потока заявок время между двумя соседними заявками Т распределено экспоненциально с плотностью вероятности:

ƒ(t)= λe-λt.

Случайное время ожидания в очереди начала обслуживания tоч тоже можно считать распределенным экспоненциально:

ƒ (tоч)=V*e-vtоч ,

где v — интенсивность потока прохода очереди, определяемая средним числом заявок, проходящих на обслуживание в единицу времени:

v=1/Точ ,

где Точ — среднее время ожидания обслуживания в очереди.

Выходной поток заявок связан с потоком обслуживания в канале, где длительность обслуживания tобс является тоже случайной величиной и подчиняется во многих случаях показательному закону распределения с плотностью вероятности:

ƒ(t обс)=µ*е µ tобс ,

где µ - интенсивность потока обслуживания, т.е. среднее число заявок, обслуживаемых в единицу времени:

µ=1/ t обс[чел/мин; руб./час; чеков/час; докум./день; кг./час; т./год] ,

где t обс - среднее время обслуживания заявок.

Важной характеристикой СМО, объединяющей показатели λи µ , является интенсивность нагрузки: ρ= λ/ µ, которая показывает степень согласования входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

Кроме понятия простейшего потока событий часто приходится пользоваться понятиями потоков других типов. Поток событий называется потоком Пальма, когда в этом потоке промежутки времени между последовательными событиями T1, T2, ..., Тk ..., Тn являются независимыми, одинаково распределенными, случайными величинами, нов отличие от простейшего потока не обязательно распределенными по показательному закону. Простейший поток является частным случаем потока Пальма.

Важным частным случаем потока Пальма является так называемый поток Эрланга.

Этот поток получается «прореживанием» простейшего потока. Такое «прореживание» производится путем отбора по определенному правилу событий из простейшего потока.

Например, условившись учитывать только каждое второе событие из образующих простейший поток, мы получим поток Эрланга второго порядка. Если брать только каждое третье событие, то образуется поток Эрланга третьего порядка и т.д.

Можно получить потоки Эрланга любого к-го порядка. Очевидно, простейший поток есть поток Эрланга первого порядка.

Любое исследование системы массового обслуживания начинается с изучения того, что необходимо обслуживать, следовательно, с изучения входящего потока заявок и его характеристик.

Поскольку моменты времени tи интервалы времени поступления заявок τ, затем продолжительность операций обслуживания t обс и время ожидания в очереди tоч, а также длина очереди lоч — случайные величины, то, следовательно, характеристики состояния СМО носят вероятностный характер, а для их описания следует применять методы и модели теории массового обслуживания.

Перечисленные выше характеристики к, τ, λ, Lоч, Точ, v, tобс, µ, р, Рkявляются наиболее общими для СМО, которые являются обычно лишь некоторой частью целевой функции, поскольку необходимо учитывать еще и показатели коммерческой деятельности.

1.3 Графы состояний СМО

При анализе случайных процессов с дискретными состояниями и непрерывным временем удобно пользоваться вариантом схематичного изображения возможных состояний СMO (рис. 6.2.1) в виде графа с разметкой его возможных фиксированных состояний. Состояния СМО изображаются обычно либо прямоугольниками, либо кружками, а возможные направления переходов из одного состояния в другое ориентированы стрелками, соединяющими эти состояния. Например, размеченный граф состояний одноканальной системы случайного процесса обслуживания в газетном киоске приведен на рис. 1.3.

λ

01λ
12

λ10λ21

Рис. 1.3. Размеченный граф состояний СМО

Система может находиться в одном из трех состояний: S0 -канал свободен, простаивает, S1— канал занят обслуживанием, S2- канал занят обслуживанием и одна заявка в очереди. Переход системы из состояния S0 в Slпроисходит под воздействием простейшего потока заявок интенсивностью λ 01а из состояния Slв состояние S0систему переводит поток обслуживания с интенсивностью λ 01. Граф состояний системы обслуживания с проставленными интенсивностями потоков у стрелок называется размеченным. Поскольку пребывание системы в том или ином состоянии носит вероятностный характер, то вероятность:pi(t) того, что система будет находиться в состоянии Siв момент времени t, называется вероятностью i-го состояния СМО и определяется числом поступивших заявок k на обслуживание.

Случайный процесс, происходящий в системе, заключается в том, что в случайные моменты времени t0, t1,t2,..., tk,..., tnсистема оказывается в том или другом заранее известном дискретном состоянии последовательно. Такая. случайная последовательность событий называется Марковской цепью, если для каждого шага вероятность перехода из одного состояния Stв любое другое Sjне зависит от того, когда и как система перешла в состояние St. Описывается марковская цепь с помощью вероятности состояний, причем они образуют полную группу событий, поэтому их сумма равна единице. Если вероятность перехода не зависит от номера к, то марковская цепь называется однородной. Зная начальное состояние системы обслуживания, можно найти вероятности состояний для любого значения к-числа заявок поступивших на обслуживание.

1.4 Случайные процессы

Переход СМО из одного состояния в другое происходит случайным образом и представляет собой случайный процесс. Работа СМО — случайный процесс с дискретными состояниями, поскольку его возможные состояния во времени можно заранее перечислить. Причем переход из одного состояния в другое, происходит скачкообразно, в случайные моменты времени, по этому он называется процессом с непрерывным временем. Таким образом, работа СМО представляет собой случайный процесс с дискретными состояниями и непрерывным; временем. Например, в процессе обслуживания оптовых покупателей на фирме «Кристалл» в Москве можно фиксировать заранее все возможные состояния простейших. СМО, которые входят в весь цикл, коммерческого обслуживания от момента заключения договора на поставку ликероводочной продукции, ее оплаты, оформления документов, отпуска и получения продукции, догрузки и вывоза со склада готовой продукции.

Из множества разновидностей случайных процессов наибольшее распространение в коммерческой деятельности получили такие процессы, для которых в любой момент времени характеристики процесса в будущем зависят только от его состояния в настоящий момент и не зависят от предыстории — от прошлого. Например, возможность получения с завода «Кристалл» ликероводочной продукции зависит от наличия ее на складе готовой продукции, т.е. его состояния в данный момент, и не зависит от того, когда и как получали и увозили в прошлом эту продукцию другие покупатели.

Такие случайные процессы называются процессами без последствия, или марковскими, в которых при фиксированном настоящем будущее состояние СМО не зависит от прошлого. Случайный процесс, протекающий в системе, называется марковским случайным процессом, или «процессом без последствия», если он обладает следующим свойством: для каждого момента времени t0вероятность любого состояния t > t0системы Si, - в будущем (t>tQ) зависит только от ее состояния в настоящем (при t = t0) и не зависит от того, когда и каким образом система пришла в это состояние, т.е. оттого, как развивался процесс в прошлом.

Марковские случайные процессы делятся на два класса: процессы с дискретными и непрерывными состояниями. Процесс с дискретными состояниями возникает в сиcтемах, обладающих только некоторыми фиксированными состояниями, между которыми возможны скачкообразные переходы в некоторые, заранее не известные моменты времени. Рассмотрим пример процесса с дискретными состояниями. В офисе фирмы имеются два телефона. Возможны следующие состояния у этой системы обслуживания: So—телефоны свободны; Sl— один из телефонов занят; S2— оба телефона заняты.