Смекни!
smekni.com

Теоретические основы математических и инструментальных методов экономики (стр. 9 из 22)

Внутрення непротиворечивость предпосылок модели проверяется также путем сравнения друг с другом получаемых с ее помощью следствий, а также со следствиями "конкурирующих" моделей.

Оценивая современное состояние проблемы адекватности математических моделей экономике, следует признать, что создание конструктивной комплексной методики верификации моделей, учитывающей как объективные особенности моделируемых объектов, так и особенности их познания, по-прежнему является одной из наиболее актуальных задач экономико-математических исследований.

Основы оптимального управления. Экономические процессы и их формализованное представление. Управление и управляющие воздействия. Общая постановка задачи оптимального управления.

Рассмотрим общую постановку задачи оптимизации экономических систем. Пусть имеется система, состояние которой может изме­ниться в результате некоторого количества управляющих воздействий. Задавая эти воздействия, можно получить определенный процесс изменения состояния си­стемы. При этом возникают две задачи: первая предполагает выбор таких воздействий на систему, чтобы проис­ходящий процесс удовлетворял заданным условиям, такие процессы принято называть допустимыми), вторая задача - выбор из этого множества допустимых процессов наилучшего (оптимального) процесса.

Чтобы решать оптимизационные задачи с помощью мате­матических методов, нужно сформулировать на математическом языке рассматриваемые процессы, ограничения, накладываемые на состояние системы и управляющие воздействия, а так же записать математические модели, описывающие эти процессы.

Введем некоторые понятия и обозначения. Рассмотрим множество М с эле­ментами v

, где v - пары вида v=(x, у),
,
,
- некоторые заданные множества. Проек­цией множества М на множество Х назовем подмножество Мx, обладающее тем свойством, что для каждого
существу­ет такой элемент
, что пара
содержится в мно­жестве М.

Введем понятие сечения Мx множества М при данном x. Сечением Мx будем называть множество всех y, при которых пара

принадлежит множеству М.

Введем понятие функционала, являющегося одним из главных в задачах оптимального управления. Будем говорить, что на мно­жестве М задан функционал F , если известно правило, которое каждому элементу

ставит в соответствие определенное действительное число F(v).

В общем виде задача оптимизации формулируется как задача отыскания минимального (или максимального) значения функ­ционала F(v) на множестве М.

Предположим, что требуется минимизировать функционал F(v) на множестве М. Если решение этой задачи существует (обозначим его через

), то
называется опти­мальным элементом множества M, а величина
- оптимальным значением функционала. Решения поставленной задачи F и
будем записывать следующим образом:

.

Аналогично формулируется задача о нахождении максималь­ного значения функционала.

Введем понятия точной нижней и верхней границы функцио­нала. Точной нижней границей функционала

на множестве М назовем такое число т, если:

1)

для любого
;

2) существует последовательность

, на которой
.

Точная нижняя граница функционала обозначается

.

Последовательность {vs} называется минимизирующей последовате­ль­ностью.

Точно так же определяется точная верхняя граница n функ­ционала

:

Назовем функционал

ограниченным снизу (сверху) на множестве М, если существует такое число A, что при всех
(
). Если функционал является ограниченным снизу (сверху), то решение задачи о нахождении его точной нижней (верхней) границы существует, т. е. имеет место следую­щая теорема (приведем без доказательства): Пусть на множестве М задан ограниченный снизу функционал
. Тогда реализуется одна из двух возможностей:

1) Существуют элемент

и число
, при которых
и
при всех
.

2) Существуют последовательность

элементов множе­ства М и число
, удовлетворяющее условиям
,
и
при всех
.

Данная теорема имеет важное значение для понимания сущности задачи оптимизации по двум причинам. Во-первых, она говорит о том, что постановка задачи об отыскании наименьшего (наибольшего) значения ограниченного снизу (сверху) функционала имеет смысл. Во-вторых, она объясняет природу решения такой задачи. А именно: решением будет либо определенный элемент

множества М, минимизирующий (максимизирующий) функци­онал
, либо последовательность
элементов множества М, являющаяся миними­зи­рующей (максимизирующей) последо­вательностью. В первом случае можно говорить о точном решении задачи, а во втором - о приближенном.

Задачи оптимизации управляемых процессов (оптимального управления) являются частными по отношению к сформулированной выше общей задаче оптимизации. Рассмотрим постанову задач оптимального управления.

Введем некоторые понятия.

Важнейшими из них являются понятия состояния системы и управления. Будем рассматривать системы, состояние которых может быть в любой момент времени определено вектором х n-мерного пространства с координатами

. Пространст­во Х будем называть пространством состояний системы.

Так как система изменяется во времени, то ее поведение можно описать последовательностью состояний. Такую последовательность системы

называют ее траекторией.

Переменная t (называется аргу­ментом процесса) может быть некоторым отрезком числовой прямой (

) или отрезком натурального ряда (
). В первом случае процесс, происходящий в системе, называется непрерывным, во втором случае - многошаговым, а системы - соот­ветственно непрерывными и дискретными.