Смекни!
smekni.com

Анализ временных рядов (стр. 3 из 12)

Для учета изменчивости условий модель ряда часто наделяют свойством адаптивности, по крайней мере, на уровне оценок параметров. Адаптивность понимается в том смысле, что оценки параметров легко пересчитываются по мере поступления новых наблюдений. Конечно, и обычному методу наименьших квадратов можно придать черты адаптивности, пересчитывая оценки каждый раз, вовлекая в процесс вычислений старые данные плюс свежие наблюдения. Однако при этом каждый новый пересчет ведет к изменению прошлых оценок, тогда как адаптивные алгоритмы свободны от этого недостатка.

4.1 Скользящие средние

Метод скользящих средних – один из самых старых и широко известных способов выделения детерминированной составляющей временного ряда. Суть метода состоит в усреднении исходного ряда на интервале времени, длина которого выбрана заранее. При этом сам выбранный интервал скользит вдоль ряда, сдвигаясь каждый раз на один такт вправо (отсюда название метода). За счет усреднения удается существенно уменьшить дисперсию случайной составляющей.

Ряд новых значений становится более гладким, вот почему подобную процедуру называют сглаживанием временного ряда.

Процедуру сглаживания рассмотрим вначале для ряда, содержащего лишь трендовую составляющую, на которую аддитивно наложен случайных компонент.

Как известно, гладкая функция может быть локально представлена в виде полинома с довольно высокой степенью точности. Отложим от начала временного ряда интервал времени длиной (2m+1) точек и построим полином степени m для отобранных значений и используем этот полином для определения значения тренда в (m+1)-й, средней, точке группы.

Построим для определенности полином 3-го порядка для интервала из семи наблюдений. Для удобства дальнейших преобразований занумеруем моменты времени внутри выбранного интервала так, чтобы его середина имела нулевое значение, т.е. t= -3, -2, -1, 0, 1, 2, 3. Запишем искомый полином:


.

Константы

находим методом наименьших квадратов:

.

Дифференцируем по коэффициентам

:

;

;

.

Суммы нечетных порядков t от -3 до +3 равны 0, и уравнения сводятся к виду:

;

;

;

.

Используя первое и третье из уравнений, получаем при t=0:

(1)

Следовательно, значение тренда в точке t= 0 равно средневзвешенному значению семи точек с данной точкой в качестве центральной и весами

, которые в силу симметрии можно записать короче:

.

Для того чтобы вычислить значение тренда в следующей, (m+2)-й точке исходного ряда (в нашем случае пятой), следует воспользоваться формулой (1), где значения наблюдений берутся из интервала, сдвинутого на такт вправо, и т.д. до точки N-m .

Далее приводятся формулы для подсчета скользящего среднего подбором полиномов второго и третьего порядка к отрезкам ряда длиной до 9 точек:

количество точек формула

5

7

9

.

Свойства скользящих средних:

1) сумма весов равна единице (т.к. сглаживание ряда , все члены которого равны одной и той же константе, должно приводить к той же константе);

2) веса симметричны относительно серединного значения ;

3) формулы не позволяют вычислить значения тренда для первых и последних m значений ряда;

4) можно вывести формулы для построения трендов на четном числе точек, однако при этом были бы получены значения трендов в серединах временных тактов. Значение тренда в точках наблюдений можно определить в этом случая как полусумма двух соседних значений тренда.

Следует отметить, что при четном числе 2mтактовв интервале усреднения (двадцать четыре часа в сутки, четыре недели в месяце, двенадцать месяцев в году), широко практикуется простое усреднение с весами

. Пусть имеются, например, наблюдения на последний день каждого месяца с января по декабрь. Простое усреднение 12 точек с весами
дает значение тренда в середине июля. Чтобы получить значение тренда на конец июля надо взять среднее значение тренда в середине июля и середине августа. Оказывается, это эквивалентно усреднению 13-месячных данных, но значения на краях интервала берут с весами
. Итак, если интервал сглаживания содержит четное число 2m точек, в усреднении задействуют не 2m, а 2m+1 значений ряда :

.

Скользящие средние, сглаживая исходный ряд, оставляют в нем трендовую и циклическую составляющие. Выбор величины интервала сглаживания должен делаться из содержательных соображений. Если ряд содержит сезонный компонент, то величина интервала сглаживания выбирается равной или кратной периоду сезонности. В отсутствии сезонности интервал сглаживания берется обычно в диапазоне три-семь

Эффект Слуцкого-Юла

Рассмотрим, как влияет процесс сглаживания на случайную составляющую ряда, относительно которой будем полагать, что она центрирована и соседние члены ряда некоррелированы.

Скользящее среднее случайного ряда x есть:

.

В силу центрированности xи отсутствия корреляций между членами исходного ряда имеем:

и
.

Далее,

.

Из полученных соотношений видно, что усреднение приводит к уменьшению дисперсии колебаний. Кроме того члены ряда, полученные в результате усреднения, не являются теперь независимыми. Производный, сглаженный, ряд имеет ненулевые автокорреляции (корреляции между членами ряда, разделенных k-1 наблюдениями) вплоть до порядка 2m. Таким образом производный ряд будет более гладким, чем исходный случайный ряд, и в нем могут проявляться систематические колебания. Этот эффект называется эффектом Слуцкого-Юла .

4.2 Определение порядка полинома методом последовательных разностей

Если имеется ряд, содержащий полином (или локально представляемый полиномом) с наложенным на него случайным элементом , то было бы естественно исследовать, нельзя ли исключить полиномиальную часть вычислением последовательных разностей ряда. Действительно, разности полинома порядка k представляют собой полином порядка k-1. Далее , если ряд содержит полином порядка p , то переход к разностям , повторенный (p+1) раз, исключает его и оставляет элементы, связанные со случайной компонентой исходного ряда.

Рассмотрим, к примеру, переход к разностям в ряде, содержащим полином третьего порядка.

0 1 8 27 64 125

1 7 19 37 61

6 12 18 24

6 6 6

0 0

Взятие разностей преобразует случайную составляющую ряда.

В общем случае получаем :

;

;

;

;