Смекни!
smekni.com

Анализ временных рядов (стр. 7 из 12)

Точностные характеристики оценки

получены для гауссовских процессов. В частности, для гаусовского белого шума, у которого все корреляции равны нулю,
. Математическое ожидание
для гауссовского белого шума оказывается не равным нулю, а именно,
, то есть оценка
оказывается смещенной. Величина смещения убывает с ростом объема выборки и не столь существенна в прикладном анализе.

Оценка

асимптотически нормальна при
, что дает основание для построения приблизительного доверительного интервала. Широко применяемый 95%-интервал есть
.

Границы доверительного интервала, нанесенные на график, называют доверительной трубкой. Если коррелограмма некоторого случайного процесса не выходит за пределы доверительной трубки, то этот процесс близок к белому шуму. Правда, это условие можно считать лишь достаточным. Нередко выборочная коррелограмма гауссовского белого шума содержит один, а то и два выброса среди первых 20 оценок

, что естественно затрудняет интерпретацию подобной коррелограммы.

Наряду с автокорреляционной функцией при анализе структуры случайного временного ряда используется частная автокорреляционная функция, значения которой суть частные коэффициенты корреляции.

9. Свободные от закона распределения критерии проверки ряда на случайность

Простейшей гипотезой, которую можно выдвинуть относительно колеблющегося ряда, не имеющего явно выраженного тренда, является предположение, что колебания случайны. В случайных рядах, согласно гипотезе, наблюдения независимы и могут следовать в любом порядке. Для проверки на случайность желательно использовать критерий, не требующий каких-либо ограничений на вид распределения совокупности, из которой, по предположению, извлекаются наблюдаемые значения.

1. Критерий поворотных точек состоит в подсчёте пиков (величин, которые больше двух соседних) и впадин (величин, которые меньше двух соседних). Рассмотрим ряд y1,...,yN.

пик впадина

yt-1 < yt > yt+1 yt-1 > yt < yt+1


yt-1 yt yt+1 yt-1 yt yt+1

Рис. Поворотные точки.

Для определения поворотной точки требуются три последовательных значения. Начальное и конечное значения не могут быть поворотными точками, т. к. неизвестно y0 и yN+1. Если ряд случаен, то эти три значения могут следовать в любом из шести возможных порядков с равной вероятностью. Только в четырёх из них будет поворотная точка, а именно, когда наибольшее или наименьшее из трёх значений находится в середине. Следовательно, вероятность обнаружения поворотной точки в любой группе из трёх значений равна 2/3.


с с c c c c

b b b bbb

а а a a a a

Рис. Варианты взаимного расположения трёх точек.

Для группы из N величин определим счётную переменную Х.

ì 1, если yt-1 < yt > yt+1 или yt-1 > yt < yt+1

Х = í

î 0, в противном случае.

Тогда число поворотных точек р в ряде есть просто

, а их математическое ожидание есть М[p]=2/3(N-2). Дисперсия числа поворотных точек вычисляется по формуле D[p]=(16N-29)/90, а само распределение близко к нормальному.

2. Критерий, основанный на определении длины фазы

Интервал между двумя поворотными точками называется фазой. Для того , чтобы установить наличие фазы длины d (например, восходящей) , нужно обнаружить d+3 членов, содержащих падение от первого члена ко второму ,затем последовательный подъем до (d+2)-го члена и падение к (d+3)-ему члену.


1 2 3 4 d+1 d+2 d+3 N

рис. 3. Фаза длины d.

Рассмотрим группу из d+3 чисел, расположенных в порядке возрастания. Если, не трогая двух крайних членов, извлечь пару чисел из оставшихся d+1 и одно из них поставить в начало, а другое в конец, получим фазу длины d. Существует

способов такого выбора пары чисел и каждый член пары может быть поставлен в любой конец, следовательно число восходящих фаз равно d(d+1).

Кроме того, поворотные точки будут иметь место, если первый член последовательности поставить в конец, а любой из оставшихся, за исключением второго, поместить в начало. Число таких последовательностей составит (d+1) . Еще столько же последовательностей получиться если последний член в исходной, возрастающей, последовательности поставить в начало, а любой другой, кроме последнего, в конец. Во избежании двойного счета следует исключить случай, когда первый член ставится на последнее место, а последний на первое. Таким образом, в последовательности из (d+3) чисел с фазой длиной d число случаев роста составит