Смекни!
smekni.com

современные модели описания структуры жидкости (стр. 2 из 4)

Второе предположение сводится к представлению о квазикристаллической структуре жидкости: каждая молекула окружена соседними, которые располагаются вокруг нее почти так же, как и в кристалле того же вещества. Однако во втором слое появляются отклонения от упорядоченности, которые увеличиваются по мере отдаления от первоначально взятой молекулы. Иначе говоря, отступление от правильного расположения по мере удаления от данной молекулы систематически возрастает и на большом расстоянии становится очень значительным – в жидкости существует ближний порядок. Этим строение жидкости отличается от строения кристаллов, характеризующегося строгой повторяемостью одного и того же элемента структуры (иона, атома, группы атомов, молекул) во всех направлениях, то есть дальним порядком.

Изучение рассеяния рентгеновских лучей в жидкостях, состоящих из многоатомных молекул, показало не только упорядоченное расположение молекул, но и известную закономерность во взаимной ориентации частиц. Эта ориентация усиливается для полярных молекул и если проявляется действие водородной связи.

Беспорядочное движение молекул жидкости приводит к непрерывному изменению расстояний между ними. Это можно выразить словами: структура жидкости носит статистический характер. В этом состоит существенное различие жидкости от кристаллов. Статистический характер упорядоченного расположения молекул жидкости приводит к флуктуациям – непрерывно происходящим отклонениям не только от средней плотности, но и от средней ориентации, так как молекулы жидкости способны образовывать группы, в которых преобладает определенная ориентация. Чем меньше величина этих отклонений, тем чаще они встречаются.

1.3. Колебательно - усредненная структура жидкости

Структурное описание может относиться ко всему множеству элементов атомно-молекулярной системы, задающемуся числом частиц, или к его части. Полное соответствие соблюдается только в случае идеального кристалла, однако оно не является единственно возможным в частично упорядоченных системах (фазах), имеющих внешние и внутренние поверхности раздела. Второе разделение связано с тем, что структура может относиться не только к исходным элементам множества, задающего систему, но и к производным элементам, геометрически или топологически задающимся в пространстве (например, разного рода полиэдральные схемы для всего объема жидкости). Разновременные I, V, D и производные от них структуры в твердом и жидком состоянии, связанные с усреднениями в расположении частиц за разные времена, привносят добавочную специфику и представляют характерный пример отличия структурных элементов в параллельно сосуществующих структурах.

С использованием компьютерного эксперимента и других теоретических и экспериментальных методов в жидкости в настоящее время выделяются разные пространственные структуры.

В структуре I структурные единицы тождественны или задаются исходными точками (частицами) системы, которые могут быть получены методами компьютерного моделирования.

В структуре V исходный структурный элемент выделяется при усреднениях расположений частиц при их колебательных движениях. При этом, в случае кристалла появляется трансляционная упорядоченность в цепочке частиц.

Наиболее вероятная структура Dv, в этом случае геометрически тождественна со структурой V. В то же время только в случае структуры D реального кристалла, реализующейся за макроскопические времена, появляется решетка кристалла и возможность описания системы, используя федоровские группы симметрии (при отсутствии рассмотрения внешних границ). Таким образом, понятие идеального кристалла может соотноситься в первую очередь со структурой D реального объекта. В то же время объединение динамического и геометрического подходов описания структуры кристаллов, по-видимому, возможно через анализ соотношения их конкретных структур I, V, Dv, D.

При переходе к жидкости появляются новые структурные особенности. Описание структуры здесь должно быть дано в уточняющей трактовке, не тождественной квазикристаллическому описанию. Это связано с тем, что в отличие от твердого тела колебательно - усредненную структуру жидкости нельзя рассматривать без учета влияния диффузионных (трансляционных и вращательных) движений молекул на характер усреднения их центров колебаний, задающих геометрию структурных единиц. Особенность рассматриваемой здесь V-структуры заключается в том, что она относится к пространственно - разделенным участкам системы, включающим только часть ее частиц, и отвечает дискретному расположению центров колебаний (или усредненных позиций среди смещающихся центров колебаний) вокруг позиции, задающейся невозмущенной диффузионным движением конфигурацией молекул. Геометрические различия структур V и V' соответствуют различиям ''жестких'' и ''мягких'' структурных конфигураций в конформационном анализе. При совместном рассмотрении жестких и нежестких структур V и V' жидкостей и растворов и жестких (мягких) конфигураций сложных молекул может идти объединение геометрического и динамического подходов к анализу структуры сложных систем и изучение структурных эффектов влияния среды на конформационные движения молекул. Переход к описанию жидкости на уровне колебательно - усредненной структуры в этом случае может осуществляться в рамках рассмотрения двух структурных подсистем (V и V') с учетом трех видов молекул, которые могут в разной степени присутствовать в жидкостях:

V-частицы, которые осуществляют колебательные движения во временных положениях равновесия в течение времени τ в постоянном поле, создаваемом одними и теми же соседями (центр колебаний центральной молекулы усредняется вне влияния поля нарушений, появляющегося вследствие изменения расположений частиц при диффузионных движениях).

I'-частицы, находящиеся вне позиций, отвечающих временным положениям равновесия в конфигурациях глубоких минимумов, на поверхности потенциальной энергии системы.

V'-частицы, колебания которых осуществляются при наличии влияния быстропеременного поля локальных нарушений исходной постройки, создаваемого I'-частицами.

1.4. Кластерная структура жидкости.

Кластеры, многоядерные комплексные соединения, в основе молекулярной структуры которых лежит объемный скелет (ячейка) из атомов металла, (обычно переходного), непосредственно связанных между собой. Ячейка окружена лигандами и играет роль центра атома. Как правило, она имеет, форму правильного полиэдра. Из возможных полиэдров чаще других реализуются те, стороны которых правильные треугольники.

Атомные и молекулярные кластеры. В простейшем случае эту систему описывают моделями, в которых частицы заменены шарами. При этом кластер удобно рассматривать как жидкую каплю, в которой частицы плотно упакованы. На рис. 2 показан пример такого кластера. С геометрической точки зрения такая модель кластера не представляет наиболее плотную упаковку шаров. Под плотностью упаковки обычно понимают долю пространства занимаемую шарами, которыми заполнено все пространство. Так, например, пентагональная упаковка шаров, изображенная на рис. 3, является более плотной, чем рассматриваемая нами модель (ее плотность составляет 72 процента).

Рис. 2.Шаровая модель кластера. Рис. 3.Пентагональная упаковка шаров.

При конечной температуре такая упаковка, однако, обладала бы большей свободной энергией, чем рассматриваемая нами модель жидкой капли. Возможны и более плотные упаковки шаров, чем изображенная на рис. 3. Существует две основные плотнейшие упаковки — кубическая трехслойная и гексагональная двухслойная. Для плотнейшей упаковки коэффициент заполнения пространства равен 0.74048. Такие структуры действительно могут наблюдаться при очень низких температурах в кластерах из атомов благородных газов.

Современная технология позволяет получать кластеры, содержащие заданное число молекул данного типа. Методом масс - спектрометрии можно выбрать из пучка кластеры, содержащие фиксированное число молекул п. Так у плотно упакованного кластера из 20 атомов только один атом находится внутри объема. У кластеров из 100 атомов — не более 20.

Для малых кластеров n<100 необходимо детальное знание структуры кластера. В некоторых случаях, однако, рассматриваемая нами модель жидкой капли для описания свойств кластера имеет смысл, даже если число атомов в кластере очень мало. Это можно проиллюстрировать на примере кластеров, образующих изомеры — различные молекулярные конфигурации данного химического соединения. Каждый изомер локально устойчив, поскольку соответствует минимальной энергии, однако он может перейти в другую изомерную форму, если при нагревании получит достаточно энергии. Один из примеров таких «текучих» кластеров — тример натрия: три атома образуют равнобедренный треугольник, у которого угол, образованный двумя одинаковыми сторонами, не остается в каком-то одном положении, а непрерывно перемещается с одной вершины на другую. Поскольку на микроскопическом уровне их форма не фиксирована, текучие кластеры следует рассматривать в этом случае скорее как капли жидкости, а не как твердые частицы.