Смекни!
smekni.com

современные модели описания структуры жидкости (стр. 4 из 4)


Глава 3. Кластеры в жидкостях

Для описания жидкого состояния наиболее полную картину кластерной динамики предложил Стюарт. По Стюарту, жидкость состоит из очень маленьких кристаллов (сиботаксических групп), представляющих собой агрегат из нескольких десятков или сотен молекул, которые неустойчивы и непрерывно меняют свое положение. Комплексы распадаются и образуются вновь так, что вполне определенная молекула непрерывно меняет группы и входит в состав все новых и новых конгломератов. Сиботаксические группы Стюарт рассматривал, как не резко очерченные области, переходящие непрерывным образом одна в другую. В пределах сиботаксических областей относительное расположение частиц и их относительная ориентация сохраняют достаточную степень правильности. К этому же времени относятся работы Данилова по рентгеноструктурному исследованию жидкостей, который доказал наличие в них ближнего порядка.

Не подвергал сомнению реальное существование кластеров Френкель. Он полагал, что у веществ с вытянутой стержнеобразной формой между кристаллическим и обычным жидким состояниями наблюдается промежуточное жидкокристаллическое или анизотропно – жидкое состояние. При этом ориентационный порядок сохраняется в макроскопически малых областях, которые, по Орнштейну, называются роями. Ориентационно - упорядоченные области, но значительно меньших размеров, существуют в обычном аморфно – жидком состоянии, которые Стюарт обозначил как сиботаксические области. В случае анизотропных жидкостей рои при отсутствии внешних воздействий сохраняют неизменную структуру, то есть представляют собой термодинамически устойчивые образования. Сиботаксические области отличаются от роев не только своими малыми размерами, но и флуктуационным характером образования и распада. Такого же мнения придерживается Уббелоде, который определил рои как кристаллизуемые кластеры и сиботаксические группы как антикристаллические кластеры.

Кластеры устойчивы и могут находиться длительное время в изолированном состоянии. Есть основания полагать, что заряженные частицы стабилизируют кластеры. Поэтому можно подразделить кластеры на заряженные и не имеющие заряда – нейтральные кластеры.

Процессы взаимодействия кластеров настолько деликатны, что зачастую не поддаются прямым измерениям. Любое воздействие на кластер в большинстве случаев должно приводить к его разрушению.

3.1. Поляронные состояния в нейтральных кластерах

Исследование электронных свойств нейтральных кластеров из поляронных молекул были начаты сравнительно недавно, лишь в начале 1990-х годов. Вначале были исследованы металлосодержащие кластеры воды и аммиака. Потенциал ионизации металламиачных кластеров имеет обычную асимптотическую зависимость, которая подтверждается различными теоретическими исследованиями. По сравнению с аммиачными кластерами, комплексы из атомов металла и молекул воды проявляют аномальные свойства: в частности, при большом числе полярных молекул потенциал ионизации не зависит от размера кластера. Для объяснения этих аномалий может быть использована континуальная модель.

Континуальная модель. Для того чтобы качественно проанализировать ситуацию в случае нейтральных кластеров, рассмотрим простейшую континуальную модель, где вместо электрона в кластере помещен атом металла. Поскольку в качестве металла обычно используются щелочные атомы, валентный электрон которых слабо связан с атомом, такой кластер можно рассматривать как непрерывную полярную среду, заполняющую сферу радиуса R, которая содержит электрон и ион атома металла. Взаимодействие между ионом и валентным электроном включает в себя не только кулоновский потенциал, но и поляризацию, создаваемую полярными молекулами кластера. Вклад поляризации можно описывать с помощью двух диэлектрических проницаемостей - высокочастотной e¥ и статической e0. В рассматриваемой нами модели могут реализоваться три качественно различных случая, отвечающих трем различным типам состояний валентного электрона: с двумя центрами (ионная пара), с одним центром и поверхностным состоянием (рис. 10). Состояния с двумя центрами имеют два центра сольватации (ион металла и валентный электрон), находящихся внутри кластера. Очевидно, что состояния с двумя центрами должны больше подходить для больших кластеров, т. к. атом щелочного металла распадается внутри макроскопического объема жидкости на ион и сольватированный электрон. Для небольшого числа полярных молекул электрон, вероятно, образует состояние, которое локализуется на ионе металла, в то время как поверхностные состояния электрона образуются, когда взаимодействие между полярными молекулами и ионом металла преобладают по сравнению с взаимодействием, между валентным электроном и ионом.

При континуальном описании поведение потенциала ионизации IP описывается асимптотической зависимостью:

IP(n®¥)=A+Bn-1/3 (3.1.1)

где А и В константы, которые зависят от типа электронного соcтояния, n- число атомов.

а).

б).

в).

Рис. 10. Состояния валентного электрона в кластере из полярных молекул содержащего атом металла: а) двух - центровая модель, б) одно - центровая модель, в) модель поверхностного состояния.

Для поверхностных состояний предельное значение А определяется связыванием электрона потенциалом изображения вблизи поверхности. Соответствующая энергия связи небольшая и составляет менее 1 эВ.

Рис. 11. Размерная зависимость потенциала ионизации нейтральных металламмиачных кластеров: кружки — эксперимент; сплошная линия — результаты одно-центровой модели; пунктир — двух - центровая модель.

.Для постоянной В можно вычислить только нижний предел, который приближенно равен:

В=3¤2Rws-1 (3.1.2)

, где Rws-1 – функция распределения.

Отметим, что результаты расчета энергии отрыва и критических размеров кластера, выполненных с использованием континуальной модели, количественно согласуются с экспериментальными данными, полученными для заряженных кластеров.

Заметное различие возникает только для небольших значений п < 8. Для всех рассмотренных видов состояний потенциал ионизации возрастает с увеличением размера кластера. На рис. 11 изображен график размерной зависимости потенциала ионизации для нейтральных аммиачных кластеров: кружками отмечены экспериментальные данные, сплошная линия показывает асимптотическую размерную зависимость для электронного состояния с одним центром, для которого значение постоянной А составляет 1.95 эВ. Пунктирная линия описывает асимптотическую размерную зависимость для электронного состояния с двумя центрами. Как видно, теоретические вычисления не согласуются с экспериментальными данными для кластеров больших размеров. По этой причине в качестве возможного объяснения предполагалась возможность перехода от состояния с одним центром к состоянию с двумя центрами. Как выяснилось, такой переход возможен лишь при n > 23. В качестве другого объяснения предполагалось, что изменения тангенса наклона графика размерной зависимости могут быть вызваны фазовым переходом полярных молекул от твердого состояния к жидкому. К сожалению, до настоящего времени, экспериментальные данные в этой области недостаточно точны.

Подводя итог, можно сказать, что континуальное приближение применимо для описания размерной зависимости потенциалов ионизации. Дальнейшее уточнение модели связано с ее обобщением на несферический случай.

Список литературы:

1. Астафуров В. И., Бусев А. И. ''Строение вещества'': Кн. для учащихся – 2-е изд., перераб. – М. : Просвещение, 1983. – 160 с.

2. Динамические свойства молекул и конденсированных систем. Сборник научных трудов. /под ред. А. И. Лазарева. Лениград, :«Наука», Ленинградское отделение, 1988, 455с.

3. Лахно В. Д. Кластеры в физике, химии, биологии. М.:изд. «Мир», 2001, 403 с.

4. Лященко А. К. '' Структуры жидкостей и виды порядка'' : ЖФХ, 1993. Том 67, выпуск 2. С. – 281 – 283.

5. Карапетьянц М. Х. Строение вещества : (Учебное пособие для хим. и хим. – технол. спец. вузов) &bsol; М. Х. Карапетьянц, С. И. Дракин. – 3-е изд., перераб. и доп. – М.: ''Высш. школа'', 1978. – 304с.

6. Палатник Л. С. , Фалько И. И. '' О стабильности аморфных систем'' – ЖФХ, 1983. Выпуск 10. С. –2398 – 2411.

7. Скрышевский А. Ф. “Структурный анализ жидкостей и аморфных тел”. Москва “Высшая школа” 1980, 325с.

8. Скрышевский А. Ф. “Структурный анализ жидкостей”. Москва “Высшая школа” 1971, 246с.

9. Татарникова Л. И. Структура твердых аморфных и жидких веществ. Монография. – М.: «Наука» 1983 г., 368с.

10. Торяник А. И. '' Физика жидкостей '': Учебное пособие. Донецк. ДонГУ, 1987. С. – 64 – 68.