Смекни!
smekni.com

2 Связь фотосинтеза с продуктивностью 7 (стр. 2 из 8)

Повышение среднегодовых приростов урожайности зерновых в 80-х годах обусловлено широкомасштабным применением в этот период интенсивных технологий их возделывания, связанных с резким увеличением уровня техногенных факторов. Однако, как показал опыт освоения интенсивных технологий за ряд лет, их отдача в целом по стране оказалась намного ниже нормативной. Тормозом на пути технологического обновления производства во многих случаях стали несовершенство действующего механизма хозяйствования, слабая материально-техническая база хозяйств, низкое качество и высокая стоимость поставляемых под интенсивные технологии ресурсов, их экологическая небезопасность и другие неблагоприятные условия.

Селекция и интенсификация технологий определили современный высокий уровень урожайности зерновых в ряде экономически развитых стран (табл. 2). Вместе с тем, резкое уменьшение уровня применения техногенных факторов в сельском хозяйстве России привело к снижению урожая зерновых (включая зернобобовые культуры) за период с 1990 по 1995 гг. с 18,5 до 11,6 ц/га.

Таблица 2. Средняя урожайность зерновых культур в мире и ряде стран, ц/га (по Назаренко,1996)

Страна 1990 г. 1995 г.
В мире 25,9 26,0
Великобритания 60,1 63,2
США 47,1 46,4
Канада 26,3 26,0
Франция 59,8 63,2
Германия 53,7 59,4
Венгрия 44,1 44,3
Россия 18,5 11,6
Украина 34,9 24,4

Высокий уровень использования в зарубежных технологиях химических средств, механизация и мелиорация приводят к загрязнению биосферы, засолению почв, развитию эрозионных процессов, увеличению затрат на единицу продукции, росту цен на средства труда, дефициту водных и энергетических ресурсов. Эти издержки интенсивной технологии возделывания зерновых находят отражение в снижении приростов их урожайности, наблюдающемся в ряде развитых стран. Поэтому, если базироваться только на существующих технологиях, вряд ли можно надеяться на получение в дальнейшем более высоких приростов урожайности, чем в 60—70-е годы XX века. Обеспечить необходимые темпы роста продуктивности зерновых культур позволит лишь перевод технологии их возделывания на качественно новый уровень. По мнению зарубежных специалистов в условиях снижения на мировом рынке цен на зерно и возрастания требований к охране окружающей среды необходимо расширение применения интегрированных ресурсосберегающих технологий (Ковалев, Касаева, Семенова и др., 1989).

Сейчас стало очевидным, что роль селекции в решении этих вопросов будет все больше возрастать. Сорт является наиболее надежным и экономически выгодным фактором повышения уровня урожайности и ее стабильности.


СВЯЗЬ ФОТОСИНТЕЗА С ПРОДУКТИВНОСТЬЮ РАСТЕНИЙ

Теория фотосинтетической продуктивности.

Фотосинтез был открыт 230 лет назад, но очень долго это направление в науке было далеким от практических задач агрономии. Только в начале ХХ века были сделаны первые попытки, объяснить формирование фитомассы с помощью каких-то отдельных показателей (интенсивность и чистая продуктивность фотосинтеза, площадь листьев). Однако это направление оказалось безуспешным. Академик РАН А.Т.Мокроносов (1983) выделил три этапа последовательного приближения исследователей фотосинтеза к концепции продуктивности (в том числе хозяйственного урожая).

Первый шаг в этом направлении был сделан Л.А.Ивановым в 1941году. Если в более ранних работах исследователи пытались найти прямую зависимость между урожаем и каким-то отдельным показателем, то он предложил балансовое уравнение, в котором выразил зависимость между общей фитомассой и интенсивностью фотосинтеза, размерами ассимиляционного аппарата, временем его работы с одной стороны и дыханием с другой.

На следующем этапе разрабатывалась теория фотосинтетической деятельности растений в фитоценозах как основа их продуктивности. Это направление получило развитие в работах А.А.Ничипоровича, А.К.Оканенко, Л.М.Дорохова, Г.П.Устенко, И.С.Шаталова, Б.И.Гуляева, Ю.К.Росса, Х.Г.Тооминга, И.А.Тарчевского и др., а также за рубежом. В результате были разработаны основные положения теории фотосинтетической деятельности не отдельно взятого растения, а фитоценоза как целостной системы. Поэтому продуктивность фитоценозов, в т.ч. и хозяйственный урожай агроэкосистем, стали рассматривать, прежде всего, как результат их фотосинтетической деятельности. Благодаря этим работам фотосинтез стал не только чисто биологической проблемой, но и агрономической. Экспериментальные данные по фотосинтетической деятельности агрофитоценозов стали успешно применять для квалифицированного решения многих вопросов агрономической практики (Гуляев и др., 1989). Изучение основных показателей продукционного процесса фитоценозов было включено одним из главных вопросов в Международную Биологическую Программу, которая проводилась в течение 10 лет (1964-1974). В ней участвовали не только институты АН СССР и университеты, но также сельскохозяйственные НИИ, сельскохозяйственные ВУЗы и опытные станции.

Значительно позже в нашей стране началось изучение возможностей применения основных показателей фотосинтетической деятельности растений и продукционного процесса в селекции. Так как на основе теории фотосинтетической продуктивности удалось установить тесную связь между фотосинтезом и урожаем для многих культур, то она позволила определить характер и возможные изменения этих характеристик в процессе селекции. На примере отдельных культур исследователям удалось проследить общие тенденции эволюции фотосинтетических функций растений (Быков, Зеленский, 1982).

На современном этапе появилась настоятельная необходимость и реальная возможность более органично связать теорию фотосинтетической продуктивности с нефотосинтетическими процессами. Поэтому на повестку дня поставлена разработка общей теории продукционного процесса на основе теории фотосинтетической продуктивности (Мокроносов, 1983; Ничипорович, 1988 и др.). При этом главное внимание должно быть уделено не экстенсивным факторам (увеличение размеров ассимилирующих органов и фотосинтетических потенциалов), а в первую очередь показателям, характеризующим производительность продукционного процесса.

В разрабатываемой теории продукционного процесса значительно больше внимания следует также уделить донорно-акцепторным отношениям, которые характеризуют сам процесс формирования подземной и надземной фитомассы, в том числе хозяйственного урожая. Причем эти закономерности целесообразно учитывать не только количественными показателями сухого вещества, но и энергетическими (Коломейченко, 2001). Установлено, что более полная энергетическая характеристика любых сельскохозяйственных культур, севооборотов и природных фитоценозов может быть дана с помощью следующих трех показателей:

а) коэффициент использования ФАР во времени (Кв.), показывающий ее долю от поступившей за потенциально возможный вегетационный период со среднесуточной температурой выше +30 С°;

б) коэффициент использования ФАР в пространстве (Кп), т.е. общепринятый сейчас КПД ФАР;

в) коэффициент биоэнергетической эффективности (Кб), характеризующий отношение энергии хозяйственного урожая к антропогенной, которая была затрачена на его выращивание и уборку.

Одним из важнейших недостатков в теории фотосинтетической продуктивности было полное игнорирование качеством урожая. При разработке теории продукционного процесса потребуется более тесная кооперация с биохимиками, чтобы квалифицированно объединить количественные и качественные показатели, характеризующие процесс формирования урожая.

Количественные показатели фотосинтеза и продуктивности.

Измерение интенсивности фотосинтеза. Как известно, открытие фотосинтеза произошло в 1771 году, когда Дж. Пристли обнаружил способность растений исправлять состав воздуха, испорченного горением свечи или дыханием животного (Полевой, 1989). Это и предопределило на два века вперед способ измерения интенсивности фотосинтеза. Для этого в специальной прозрачной камере, в которую помещали растение, лист, суспензию хлоропластов или водорослей, на свету оценивали скорость убывания концентрации углекислоты или увеличения концентрации кислорода. Соответственно и интенсивность процесса рассчитывали как количество поглощенной углекислоты или выделившегося кислорода (в мкл или мг) в расчете на единицу поверхности или массы листьев. Поскольку интенсивность фотосинтеза единицы поверхности или массы листьев сильно варьировали, то в некоторых случаях возникала необходимость оценивать эффективность работы единицы массы фотосинтетических пигментов, и тогда поглощение СО2 или выделение О2 рассчитывали на единицу содержания хлорофилла.

Работы такого рода показали большую вариабельность всех показателей, и первоначально это вдохновило исследователей на поиск путей форсирования продуктивности растений за счет повышения эффективности их фотосинтеза. Однако выяснилось, что эффективность функционирования единицы содержания хлорофилла возрастает со снижением его концентрации. Наоборот, интенсивность фотосинтеза единицы поверхности листа или целого растения возрастает с повышением содержания в нем хлорофилла, то есть в условиях низкой эффективности усвоения СО2 единицей массы пигментов. Было найдено оптимальное содержание хлорофилла и площади листьев на единицу площади посева, которое соответствует максимальному урожаю (Ничипорович, 1972). Таким образом, обнаружилось противоречие между эффективностью работы единицы массы хлорофилла на уровне хлоропласта и продуктивностью единицы ассимилирующей поверхности листа, растения, посева.