Смекни!
smekni.com

100 великих нобелевских лауреатов (стр. 45 из 119)

Вечером 6 января 1896 года из Лондона по телеграфу было передано сообщение: «Даже шум военной тревоги не в силах был бы отвлечь внимание от замечательного триумфа науки, весть о котором докатилась до нас из Вены. Сообщается, что профессор Вюрцбургского университета Роутген открыл свет, который проникает при фотографировании через дерево, мясо и большинство других органических веществ. Профессору удалось сфотографировать металлические гири в закрытой деревянной коробке, а также человеческую руку, причем видны лишь кости, в то время как мясо невидимо».

Казалось, не было газеты, которая бы не напечатала снимок кисти руки, принадлежащей Берте Рентген — жене профессора. А профессор Рентген, запершись у себя в лаборатории, продолжал усиленно изучать свойства открытых им лучей. Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, в частности, к открытию радиоактивности. С тех пор открытие немецкого физика навсегда вошло в арсенал медицины, дефектоскопии и др.

Открытие Рентгена вызвало огромный интерес в научном мире. Его опыты были повторены почти во всех лабораториях мира. В Москве их повторил П.Н. Лебедев. В Петербурге изобретатель радио А.С. Попов экспериментировал с икс-лучами, демонстрировал их на публичных лекциях, получая различные рентгенограммы. В Кембридже Д.Д. Томсон немедленно применил ионизирующее действие рентгеновских лучей для изучения прохождения электрического тока через газы. Его исследования привели к открытию электрона.

Рентген опубликовал еще две статьи об икс-лучах в 1896 и 1897 годах, но затем его интересы переместились в другие области.

Росла и слава Рентгена, хотя ученый относился к ней с полнейшим равнодушием. Ученый не стал брать патент на свое открытие, отказался от почетной, высокооплачиваемой должности члена академии наук, от кафедры физики в Берлинском университете, от дворянского звания. Вдобавок ко всему он умудрился восстановить против себя самого кайзера Германии Вильгельма II.

В 1899 году, вскоре после закрытия кафедры физики в Лейпцигском университете, Рентген стал профессором физики и директором Физического института при Мюнхенском университете. Находясь в Мюнхене, Рентген узнал о том, что он стал первым лауреатом Нобелевской премии 1901 года по физике «в знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей, названных впоследствии в его честь».

Рассказывает Л.В. Бобров: «Это было в декабре 1901 года. Рентген узнал, что ему присуждена Нобелевская премия — первая за работы в области физики. Он не хотел ехать в шведскую столицу, однако его уговорили: таков, мол, порядок. Зато уж там, получив премию из рук самого кронпринца, он постарался поскорее стушеваться, так и не выступив перед многочисленной аудиторией, хотя двое других его коллег-лауреатов — профессор Вант-Гофф из Берлина и профессор Беринг из Галле — произнесли пространные речи, положив тем самым начало непреложной традиции. Потом, правда, на банкете во время торжественного акта в музыкальной академии Рентген был вынужден сказать несколько слов, но то была обычная официальная благодарность. Лишь по возвращении в Мюнхен, где его ждали цветы, растроганный Рентген произнес слова, шедшие от самого сердца. Он сказал, что не имеет намерения желать присутствующим того же, что выпало на его долю. Известность — это не так важно в конце концов. Ибо самая прекрасная и самая высокая радость, которую может познать каждый, над какими бы проблемами он ни работал, — это радость поиска, наслаждение достигнутым решением. И по сравнению с этим глубочайшим внутренним удовлетворением любое признание — ничто…»

При презентации лауреата К.Т. Одхнер, член Шведской королевской академии наук, сказал: «Нет сомнения в том, сколь большого успеха достигнет физическая наука, когда эта неведомая раньше форма энергии будет достаточно исследована». Затем Одхнер напомнил собравшимся о том, что рентгеновские лучи уже нашли многочисленные практические приложения в медицине.

Хотя самим Рентгеном и другими учеными много было сделано по изучению свойств открытых лучей, однако природа их долгое время оставалась неясной. Но вот в июне 1912 года в Мюнхенском университете, где с 1900 года работал Рентген, М. Лауэ, В. Фридрихом и П. Книппингом была открыта интерференция и дифракция рентгеновских лучей.

Рентгена раздражала внезапно свалившаяся на него известность, отрывавшая у него драгоценное время и мешавшая дальнейшим экспериментальным исследованиям. По этой причине он стал редко выступать с публикациями статей, хотя и не прекращал это делать полностью: за свою жизнь Рентген написал 58 статей. В 1921 году, когда ему было 76 лет, он опубликовал статью об электропроводности кристаллов.

Рентген ушел в отставку со своих постов в Мюнхене в 1920 году, вскоре после смерти жены, и умер 10 февраля 1923 года от рака.

ГЕНДРИК ЛОРЕНЦ

<Более правильное написание имени — Хендрик Лорентц (был Людвиг Лоренц — датский физик и современник Лорентца). — Прим. авт.>

(1853–1928)

«Его блестящий ум указал нам путь от теории Максвелла к достижениям физики наших дней. Именно он заложил краеугольные камни этой физики, создал ее методы… Образ и труды его будут служить на благо и просвещение еще многих поколений», — сказал Эйнштейн над прахом Лоренца. Стиль работы Лоренца — брать глубоко и стремиться к полной завершенности — послужит, по словам Макса Планка, образцом и для будущих поколений. «Его труды не перестали быть захватывающе интересными… он оставил после себя огромное наследие — истинное завершение классической физики», — оценивал вклад Лоренца Луи де Бройль. Таким был и таким остается перед потомками Гендрик Лоренц — этот «великий классик теоретической физики».

Гендрик Антон Лоренц родился 18 июля 1853 года в голландском городе Арнеме. Шести лет он пошел в школу. В 1866 году, окончив школу лучшим учеником, Гендрик поступил в третий класс высшей гражданской школы, примерно соответствующей гимназии. Его любимыми предметами стали физика и математика, иностранные языки. Для изучения французского и немецкого языков Лоренц ходил в церкви и слушал на этих языках проповеди, хотя в бога не верил с детства.

В 1870 году он поступил в Лейденский университет. С большим интересом Гендрик слушал лекции университетских профессоров, хотя его судьбу как ученого, видимо, в большей мере определило чтение трудов Максвелла, очень трудных для понимания и названных им в связи с этим «интеллектуальными джунглями». Но ключ к ним, по словам Лоренца, ему помогли подобрать статьи Гельмгольца, Френеля и Фарадея. В 1871 году Гендрик с отличием сдал экзамены и получил степень магистра, но в 1872 году покинул Лейденский университет, чтобы самостоятельно готовить докторскую диссертацию. Он возвратился в Арнем и начал работать учителем вечерней школы. Работа ему очень нравится, и вскоре Лоренц стал хорошим педагогом. Дома он создал небольшую лабораторию, где продолжал усиленно изучать труды Максвелла и Френеля. «Мое восхищение и уважение переплелось с любовью и привязанностью; как велика была радость, которую я испытал, когда смог прочесть самого Френеля», — вспоминал Лоренц. Он становится ярым сторонником электромагнитной теории Максвелла: «Его "Трактат об электричестве и магнетизме" произвел на меня, пожалуй, одно из самых сильных впечатлений в жизни; толкование света как электромагнитного явления по своей смелости превзошло все, что я до сих пор знал».

В 1875 году Лоренц блестяще защитил докторскую диссертацию и в 1878 году становится профессором специально для него учрежденной кафедры теоретической физики (одной из первых в Европе) Лейденского университета. В 1881 году он был избран членом Королевской академии наук в Амстердаме. В том же году Лоренц женился на Алетте Катерине Кайзер, племяннице профессора астрономии Кайзера. У супругов Лоренц родилось четверо детей (один из них умер в младенческом возрасте).

Уже в докторской диссертации «Об отражении и преломлении лучей света» Лоренц пытался обосновать изменение в скорости распространения света в среде влиянием наэлектризованных частичек тела. Под действием световой волны заряды молекул приходят в колебательное движение и становятся источниками вторичных электромагнитных волн. Эти волны, интерферируя с первичными, и обусловливают преломление и отражение света. Здесь уже намечены те идеи, которые приведут к созданию электронной теории дисперсии света.

В следующей статье — «О соотношении между скоростью распространения света и плотностью и составом среды», опубликованной в 1878 году, Лоренц вывел знаменитое соотношение между показателем преломления и плотностью среды.

Как пишет М. Планк: «Если диэлектрическая постоянная прозрачного тела зависит от поляризуемости его молекул, то она всегда должна быть больше, чем у свободного эфира, что согласуется с действительностью. Указанное выше затруднение для теории Максвелла — то, что показатель преломления тела, определяемый его диэлектрической постоянной, изменяется с длиной волны, в лоренцовой теории устраняется, благодаря тому, что, согласно Лоренцу, диэлектрическая постоянная дает только показатель преломления для бесконечно длинных волн. Для волн конечной длины влияние проходящей через тело электромагнитной волны на движение содержащихся в теле, колеблющихся возле своих положений равновесия электронов существенно меняется с длиной волны и обусловливает, таким образом, явления нормальной и аномальной дисперсии в соответствии с тем, насколько частота волны отклоняется от собственной частоты электронов. И для зависимости показателя преломления от объемной плотности тела Лоренц смог вывести удовлетворительно согласующуюся с экспериментальными данным формулу, исходя из оценки числа поляризованных молекул в единице объема.

По случайному совпадению ту же формулу одновременно нашел его почти однофамилец, датский физик Людвиг Валентин Лоренц, и поэтому формула названа двумя именами: формула Лоренца—Лоренца».