Смекни!
smekni.com

на тему «Геометрические преобразования» (стр. 5 из 9)

Определение. Если для упорядоченной тройки некомпланарных векторов подобие сохраняет (меняет) её ориентацию, то такое подобие называется подобием первого (второго) рода.

Корректность этого определения следует из теоремы 2.1. и следующей теоремы 3.1:

Теорема 3.1. Гомотетия

является подобием I рода при k>0 и подобием II рода при k<0.

Доказательство. В этом можно убедиться непосредственной проверкой.

Теорема 3.2. Подобие

при k≠1 можно представить композицией гомотетии
и поворота вокруг оси
:

Доказательство. В теореме 2.1. выберем род гомотетии совпадающим с родом подобия. Тогда f – движение I рода, т.е. (см. часть I, теорема 6.5.) f – перенос, поворот или винтовое движение (композиция переноса и поворота). Но, как легко проверить, композиция переноса и гомотетии есть гомотетия. Таким образом, можно гомотетию выбрать так, что f – поворот, ч.т.д.

Теорема 3.3. Подобие, отличное от движения, имеет ровно одну неподвижную точку. Эта точка называется центром подобия.

Доказательство. Зададим подобие композицией

(теорема 3.2.). Проведём плоскость α такую, что
,
. Как легко видеть, в плоскости α задано подобие плоскости. Значит, в этой плоскости есть неподвижная точка (по аналогичной теореме для плоскости).

Теорема 3.4. Подобие

при k≠1 можно представить композицией гомотетии
и поворота вокруг оси
, где
. Указанная композиция называется гомотетическим поворотом.

Доказательство. В теореме 3.2. выберем за центр гомотетии центр подобия. Тогда

.

Теорема 3.5. Подобие пространства является движением, гомотетией или гомотетическим поворотом.

Доказательство. Следует из теоремы 3.4.

Часть III. Аффинные преобразования.

1. Общие свойства аффинных преобразований плоскости.

Определение. Аффинным преобразованием плоскости называется преобразование плоскости, переводящее каждую прямую в прямую.

Свойство. При аффинном преобразовании параллельные прямые переходят в параллельные.

Доказательство. Если бы образы параллельных прямых имели общую точку, то у этой точки было бы два прообраза, что противоречит определению преобразования.

Теорема 1.1. (о задании аффинного преобразования плоскости) Для любых данных треугольников АВС и А´В´С´ существует единственное аффинное преобразование, переводящее А в А´, В в В´, С в С´.

Полностью эту теорему нам доказать не удастся. Однако покажем, как можно рассуждать, пытаясь её доказать.

Построим две решётки параллелограммов: одну – на отрезках ВС и СА (т.е. ВС и СА – стороны одного из параллелограммов решётки), другую – на отрезках В´С´ и С´А´. Если аффинное преобразование переводит А в А´, В в В´, С в С´, то оно переводит одну построенную решётку в другую (по свойству аффинного преобразования). Центры параллелограммов одной решётки перейдут в центры соответствующих параллелограммов другой (т.к. центры параллелограммов являются точкой пересечения их диагоналей). Через эти центры можно провести прямые, параллельные прямым наших решёток. Получим более мелкие решётки параллелограммов, одна из которых переходит при нашем аффинном преобразовании в другую. Для полученных решёток таким же образом можно получить ещё более мелкие и т. д. Каждая точка М определяет последовательность вложенных параллелограммов первой решётки с неограниченно уменьшающимися сторонами, содержащих М. Этой последовательности параллелограммов соответствует последовательность образов этих параллелограммов второй решётки. Эта последовательность имеет единственную общую точку. Эта точка и будет образом точки М (именно это место и сложно доказать строго). Легко проверить, что построенное преобразование будет аффинным.

Теорема 1.2. Аффинное преобразование можно представить композицией параллельного проектирования и подобия.

Доказательство. Выберем три точки А, В, С, не лежащие на одной прямой, и их образы А´, В´, С´ при аффинном преобразовании. Очевидно, точки А´, В´, С´ не лежат на одной прямой. По известной теореме треугольник А´В´С´ можно получить из треугольника АВС композицией параллельного проектирования и подобия. Такое преобразование, очевидно, будет аффинным, а по теореме 1.1 существует лишь одно аффинное преобразование, переводящее треугольник АВС в треугольник А´В´С´. Поэтому нами получено искомое представление аффинного преобразования композицией параллельного проектирования и подобия.

Теперь, представив аффинное преобразование композицией параллельного проектирования и подобия, из свойств параллельного проектирования можно получить следствия (инварианты аффинного преобразования):

  1. Аффинные преобразования сохраняют отношения длин параллельных отрезков.
  2. Отношение площади фигуры к площади её образа постоянно для всех фигур.

Также отметим ещё одно свойство аффинного преобразования, которое сразу следует из теоремы 1.1: преобразование, обратное аффинному, является аффинным. Действительно, аффинное преобразование (что фактически доказано в теореме 1.1) переводит одну косоугольную систему координат в другую, координаты точки и её образа одинаковы в одной системе координат и в её образе. Обратное преобразование, естественно, тоже будет аффинным, т.к. теперь понятно, что прообразом любой прямой является прямая.

Любые два треугольника аффинно эквивалентны, т.е. любое аффинное утверждение достаточно доказать для треугольника специального вида, например, правильного.

Задача 1.

Точки M, N, P расположены на сторонах АВ, ВС, АС треугольника АВС. Точки M´, N´, P´ симметричны точкам M, N, P относительно сторон АВ, ВС, АС. Доказать, что площади треугольников MNP и M´N´P´ равны.

Решение.

Для правильного треугольника утверждение очевидно.

Точно так же любую трапецию можно аффинным преобразованием перевести в равнобедренную, т.е. любое аффинное утверждение достаточно доказать для равнобедренной трапеции.

Задача 2.

В трапеции ABCD с основаниями AD и ВС через точку В проведена прямая, параллельная стороне CD и пересекающая диагональ АС в точке Р, а через точку С – прямая, параллельная стороне АВ и пересекающая диагональ BD в точке Q. Доказать, что прямая PQ параллельна основаниям трапеции.

Решение.

Для равнобедренной трапеции утверждение очевидно.

2. Сжатие к прямой.

Определение. Сжатием к прямой ℓ с коэффициентом k (

) называется преобразование, переводящее произвольную точку М в такую точку М´, что
и
, где
.

Теорема 2.1. Сжатие к прямой – аффинное преобразование.

Доказательство. Непосредственной проверкой убеждаемся, что прямая переходит в прямую. Можно даже заметить, что сжатие к прямой – частный случай параллельного проектирования (когда направление проектирования перпендикулярно линии пересечения плоскостей).

Теорема 2.2. Для любого аффинного преобразования существует квадратная решётка, которая при этом преобразовании переходит в прямоугольную решётку.

Доказательство. Возьмём произвольную квадратную решётку и рассмотрим один из её квадратиков ОАВС. Он при нашем преобразовании перейдёт в параллелограмм О´А´В´С´. Если О´А´В´С´ – прямоугольник, то наше доказательство закончено. В противном случае положим для определённости, что угол А´О´В´ – острый. Будем поворачивать квадрат ОАВС и всю нашу решётку вокруг точки О. Когда квадрат ОАВС повернётся на

(так что точка А перешла в точку В), точка А´ перейдёт в точку В´, а В´ в вершину параллелограмма, смежного с О´А´В´С´. Т.е. угол А´О´В´ станет тупым. По принципу непрерывности, в какой-то момент он был прямым. В этот момент квадрат ОАВС переходил в прямоугольник, а наша решётка – в прямоугольную решётку, ч.т.д.

Теорема 2.3. Аффинное преобразование можно представить композицией сжатия к прямой и подобия.

Доказательство. Следует из теоремы 2.2.

Теорема 2.4. Аффинное преобразование, переводящее некоторую окружность в окружность, является подобием.

Доказательство. Опишем около нашей окружности квадрат и повернём его так, чтобы он переходил при нашем преобразовании в прямоугольник (теорема 2.2.). Наша окружность перейдёт в окружность, вписанную в этот прямоугольник, поэтому этот прямоугольник является квадратом. Теперь мы можем указать квадратную решётку, переходящую при нашем преобразовании в квадратную решётку. Очевидно, наше преобразование – подобие.