Смекни!
smekni.com

на тему «Геометрические преобразования» (стр. 7 из 9)

Имеет место следующий факт, который мы доказывать не будем, однако, при доказательстве следующих теорем он нам понадобится:

Теорема 4.1. Аффинное преобразование переводит эллипсоид в эллипсоид.

Теорема 4.2. Произвольное аффинное преобразование пространства представимо композицией подобия и родства.

Доказательство. Пусть аффинное преобразование f отображает сферу σ на эллипсоид σ´. Из теоремы 3.1 следует, что f может быть задано этими фигурами. Рассмотрим плоскость α´, содержащую центр эллипсоида и пересекающую его по некоторой окружности ω´ (существование такой плоскости легко доказать из соображений непрерывности). Пусть α – прообраз α´,

– прообраз ω´, β – сфера, имеющая окружность ω´ своей диаметральной окружностью. Существует родство ρ, отображающее β на σ´, и существует подобие P, отображающее σ на β. Тогда
– искомое представление.

Из доказательства предыдущей теоремы сразу следует теорема 4.3:

Теорема 4.3. Аффинное преобразование, сохраняющее сферу, является подобием.

Часть IV. Проективные преобразования.

1. Проективные преобразования плоскости.

Определение. Проективная плоскостьобычная (евклидова) плоскость, дополненная бесконечно удаленными точками и бесконечно удаленной прямой, называемыми также несобственными элементами. При этом каждая прямая дополняется одной несобственной точкой, вся плоскость – одной несобственной прямой; параллельные прямые дополняются общей несобственной точкой, непараллельные – разными; несобственные точки, дополняющие всевозможные прямые плоскости, принадлежат несобственной прямой.

Определение. Преобразование проективной плоскости, переводящее любую прямую в прямую, называется проективным.

Следствие. Проективное преобразование, сохраняющее бесконечно удалённую прямую является аффинным; любое аффинное преобразование является проективным, сохраняющим бесконечно удалённую прямую.

Определение. Центральным проектированием плоскости α на плоскость β с центром в точке О, не лежащей на этих плоскостях, называется отображение, которое любой точке А плоскости α ставит в соответствие точку А´ пересечения прямой ОА с плоскостью β.

При этом, если плоскости α и β не параллельны, то в плоскости α найдётся прямая ℓ такая, что плоскость, проходящая через точку О и прямую ℓ, параллельна плоскости β. Будем считать, что ℓ при нашем проектировании переходит в бесконечно удалённую прямую плоскости β (при этом каждая точка B прямой ℓ переходит в ту точку бесконечно удалённой прямой, что дополняет прямые параллельные ОВ). В плоскости β найдётся прямая ℓ´ такая, что плоскость, проходящая через точку О и прямую ℓ´, параллельна плоскости α. Будем считать ℓ´ образом бесконечно удалённой прямой плоскости α. Прямые ℓ и ℓ´ будем называть выделенными.

Мы можем говорить, что задано просто преобразование проективной плоскости (если совместить плоскости α и β).

Из определения сразу вытекают свойства центральной проекции:

  1. Центральное проектирование – проективное преобразование.
  2. Обратное к центральному проектированию преобразование – центральное проектирование с тем же центром.
  3. Прямые, параллельные выделенным, переходят в параллельные.

Определение. Пусть точки А, В, С, D лежат на одной прямой. Двойным отношением (АВ; СD) этих точек называется величина

. Если одна из точек является бесконечно удалённой, то длины отрезков, концом которых является эта точка, можно сократить.

Теорема 1.1. Центральная проекция сохраняет двойные отношения.

Доказательство. Пусть О – центр проектирования, А, В, С, D – четыре точки, лежащие на одной прямой, A´, B´, C´, D´ – их образы.

Тогда

.

Аналогично

.

Поделив одно равенство на другое, получим

.

Аналогично, вместо точки С рассматривая точку D, получим

.

Отсюда

, т.е.
.

Чтобы доказательство было полным, осталось заметить, что все отрезки, площади и углы можно считать ориентированными.

Теорема 1.2. Пусть даны четыре точки A, B, C, D плоскости π, не лежащие на одной прямой, и четыре точки M, N, P, Q плоскости π´, не лежащие на одной прямой. Тогда существует композиция центральной (параллельной) проекции и подобия, переводящая A в M, В в N, С в Р, D в Q.

Доказательство.

Будем для удобства говорить, что ABCD и MNPQ – четырёхугольники, хотя на самом деле это не обязательно (например, могут пересекаться отрезки АВ и CD). Из доказательства будет видно, что мы нигде не используем, что точки A, В, С, D и M, N, P, Q в указанном порядке образуют четырёхугольники.

I. Если наши четырёхугольники – трапеции (АD||BC и MQ||NP), то доказательство совсем простое. Рассмотрим четырёхугольник A´B´C´D´, подобный четырёхугольнику MNPQ, такой, что AD=A´D´. Расположим плоскости π и π´ так, чтобы совпали точки А с А´ и D с D´. Теперь, если

, то нужный нам результат даст центральная проекция с центром О (см. рис.), а если ВВ´||CC´, то нужный нам результат даст параллельная проекция с направлением ВВ´.

II. Теперь докажем утверждение, если четырёхугольники произвольные. Пусть

,
. Отметим точки Х1, Х2, Z1, Z2 на прямых АВ, CD, MN, PQ соответственно так, что

;
;
;
.

Проведём теперь через точки A, B, C, D прямые АK, BL, CF, DG, параллельные X1X2 (K, L лежат на DC; G, F – на АВ), а через точки N, M – прямые NT, MS, параллельные Y1Y2 (T, S лежат на PQ). Переведём центральной (параллельной) проекцией f трапецию АВLK в трапецию А´В´L´K´ плоскости π´, подобную трапеции MNTS (это возможно по части I нашего доказательства). При этом из выбора точек Х1, Х2 следует, что прямая Х1Х2 – выделенная прямая плоскости π´. Отметим на прямой L´K´ точки С´, D´ такие, что трапеция ABCD подобна трапеции A´B´C´D´. Проведём прямые C´F´, D´G´, параллельные прямой B´L´ (F´, G´ лежат на А´В´), и отметим на прямой А´В´ точку Y1´ такую, что

,
. На прямой C´D´ отметим точку Y2´ такую, что Y1´Y2´||A´K´ (см. рис.). Из выбора точек Y1´ и Y2´ следует, что прямая Y1´Y2´ – выделенная прямая плоскости π´. При преобразовании f точка Е переходит в точку Е´ пересечения прямых A´B´ и L´K´. Точка С переходит в некоторую точку С0´ прямой С´D´.

Докажем, что С0 совпадает с С´. Из того, что Х2 при преобразовании f переходит в бесконечно удалённую точку прямой C´D´, а Y2´ - образ бесконечно удалённой точки прямой CD и центральная проекция сохраняет двойные отношения, следует, что

, откуда
. Теперь рассмотрим преобразование g, композицию центральной проекции и подобия, переводящее трапецию CDGF в трапецию C´D´G´F´. Для преобразования g аналогично можно показать, что
. Отсюда будет следовать, что точки С0 и С´ совпадают. Аналогично можно показать, что D0 – образ точки D при преобразовании f – совпадает с D´. Итак, преобразование f переводит четырёхугольник ABCD в четырёхугольник A´B´C´D´, подобный четырёхугольнику MNPQ, что и требовалось.

Теорема 1.3. Пусть даны четвёрки точек, из которых никакие три не лежат на одной прямой: A, B, C, D и A´, B´, C´, D´. Тогда существует единственное проективное преобразование, переводящее А в А´, В в В´, С в С´, D в D´.

Существование такого преобразования следует из теоремы 1.1.

Единственность можно доказывать так же, как и единственность аффинного преобразования (теорема 1.1, часть III): рассматривать квадратную решётку, строить её образ, а затем измельчать. Обойти те трудности, с которыми мы столкнулись при доказательстве аффинной теоремы, нам опять не удастся.