Смекни!
smekni.com

На пути поиска программы и инициального субстрата старения "Успехи геронтологии", 1999г., выпуск 3 (стр. 3 из 6)

ОСНОВНЫЕ СВОЙСТВА ПРОЦЕССА СТАРЕНИЯ ЖИВОТНЫХ

Анализ данных литературы и результатов наших собственных исследований позволили нам сформулировать основные свойства процесса старения.

1. Смертность животных относится к инвариантным константам, которые обеспечивают появление и сохранение жизни на Земле. Механизм старения очень надежен.

2. Всеобщность и сходство характеристик старения у млекопитающих, универсальность динамики смертности у представителей разных классов животных.

3. Дифференцировка эукариотических клеток животных на нестареющие половые и ответственные за старение соматические.

4. Старение - генетически обусловленный процесс с низким коэффициентом наследования. Средняя продолжительность жизни - четкий видовой признак.

5. Коppеляция продолжительности жизни с эффективностью работы систем pепаpации ДНК.

6. Возможны искусственный отбор по продолжительности жизни, а также быстрое изменение продолжительности жизни в эволюции.

7. Возможно значительное изменение средней продолжительности жизни популяции от поколения к поколению одной линии без всяких внешних воздействий. Вариация индивидуальной продолжительности жизни сохраняется у инбредных линий и монозиготных близнецов, хотя у них есть и определенная конкордантность по продолжительности жизни. Одинаковая вариация продолжительности жизни в популяциях разных видов.

8. На процессы старение не действует естественный отбор, так как их фенотипические проявления относятся к пострепродуктивному периоду.

9. Мы установили, что как процесс старения, так и радиационного укорочения жизни, имеют потенциальную фазу - период, когда они развиваются, но никак себя не проявляют.

10. К перечисленным выше свойствам следует добавить еще одну особенность механизма старения - облучение ионизирующей радиацией в ограниченных дозах постмитотических тканей организма может укорачивать продолжительность жизни без искажение естественного старения [12], а воздействие антиоксидантами - увеличивать [7]. Эта особенность механизма старения позволяет предположить, что в процессе старения важную роль играет не только генетический механизм, но и его взаимодействие со стохастическими повреждениями [1].

НЕКОТОРЫЕ ГИПОТЕЗЫ О МЕХАНИЗМАХ СТАРЕНИЯ

Число гипотез о природе старения весьма велико - десятки или сотни. В рамках настоящей работы мы коснемся лишь некоторых из моделей старения, так или иначе учитывающих роль генетического аппарата в этом процессе. Проанализируем наиболее распространенные модели старения с точки зрения соответствия перечисленным выше основным свойствам этого процесса.

Наибольшее внимание в наши дни привлекает теломерная гипотеза А.М. Оловникова, впервые высказанная более 25 лет назад [10]. Ее автор предположил, что в соматических клетках при каждой репликации из-за особенностей работы ферментов репликации (ДНК - полимеразы) недореплицируются концы хромосом - теломеры. В конце концов в результате постоянного укорочения хромосом при каждом митозе, недорепликация1захватывает области генома, существенные для выживания клеток, что и приводит к гибели клеток и старению организмов. Современные модификации этой гипотезы изложены Allsopp [18a] и ее модификация - Vaziri, Benchimol [88]: по мнению этих авторов укорочение теломер активирует синтез белка p53, количество которого действительно увеличивается при старении культивируемых клеток MDF. Этот белок запускает синтез ряда других, что и приводит к блоку клеток в G1 и старению.

Более 10 лет назад у инфузорий был обнаружен фермент ДНК нуклеотидтрансфераза (теломераза), достраивающий 3' концы линейных молекул ДНК хромосом короткими повторяющимися последовательностями. Позже и у других эукариот, в том числе в клетках человека, нормальных и иммортализированных раковых клетках HeLa [90] был также обнаружен этот фермент. Интересно, что помимо белковой части, теломераза содержит РНК, которая выполняет роль матрицы для наращивания ДНК короткими повторами. Такой процесс в половых и раковых клетках защищает генетически значимые участки хромосом. Это по сути своей и есть механизм смерти и бессмертия на клеточном уровне, первоначально разработанный Оловниковым [10]. Оказалось, что размер теломерной ДНК сперматозоидов не уменьшается с возрастом мужчин, тогда как в стареющих культурах нормальных фибробластов человека теломерные участки укорачиваются [56].

Недавно американские ученые [24] сообщили о том, что с помощью генно - инженерных методов удалось в нормальные, то есть стареющие со временем, клетки человека in vitro ввести и заставить экспрессироваться ген теломеразы. Это привело к увеличению в полтора раза числа циклов репродукции этих клеток.

Если считать, что этот механизм старения животных и человека, пусть не единственный, но главный, равно как и теломеразная защита хромосом germ line обеспечивает информационную преемственность в ряду поколений, то задачи дальнейших поисков заметно сужаются. Нейроны мышей проходят последние митотические циклы на 18-ые сутки беременности. Клетки нервных ганглиев дрозофилы делятся последний раз в личиночном периоде, а тканевые клетки имаго - это целиком постмитотические популяции. Поскольку в подавляющем большинстве дифференцированных соматических клеток активность теломеразы не выявляется [63], то, если строго подходить к предсказаниям теломерной гипотезы, следует заключить, что старение указанных клеток завершается сразу же после последней маргинотомии. Другими словами, ДНК нейронов новорожденных мышей полностью соответствует по степени поврежденности теломер ДНК старых животных. Следовательно, сами нейроны молодых животных по своим морфологическим и функциональным особенностям должны быть точно такими же, как и у стариков.

Понимая абсурдность такого предположения, Оловников выдвинул идею о том, что маргинотомия сопровождает не только репликативный, но и репаративный синтез [76].

Посмотрим, насколько хорошо гипотеза Оловникова согласуется с общими свойствами старения, перечисленными в предыдущем разделе: п. 2: теломеразная гипотеза предсказывает всеобщность старения, т.к. хромосомы всех многоклеточных имеют теломеры. Динамика смертности (распределение вероятности смерти по времени) согласно этой гипотезе будет универсальной, т.к. не участвующие в синтезе белков теломеры различных видов скорее всего имеют одинаковую форму распределения по длине, и различную среднюю длину у разных видов, что обеспечит им различную среднюю продолжительность жизни. П. 3: с точки зрения теломерной гипотезы дифференцировка клеток на нестареющие половые и стареющие соматические объясняется тем, что в первых, в отличие от вторых, работает теломераза, однако эта гипотеза не объясняет, почему в геноме половых клеток за миллионы поколений не накапливаются повреждения. Накопление мутаций, других повреждений генома и снижение репаративной активности в соматических клетках при старении надежно показано, так же, как и отсутствие таких событий в половых клетках при чередовании поколений. П. 4: хорошо согласуется с этой гипотезой, поскольку длинна теломер потомков полностью определяется этим же параметром у родителей, а у монозиготных близнецов и вовсе одинакова. П. 5: не согласуется с этой гипотезой - интенсивность репарации и скорость укорочения теломер, если следовать модифицированной гипотезе А.М.Оловникова, могут быть только обратно пропорциональны, в то время как интенсивность репарации часто прямо пропорциональна продолжительности жизни. В предельном случае мутантные линии без эксцизионной репарации, согласно этой гипотезе, не должны стареть, смерть их особей может быть обусловлена только случайными причинами, а кривые выживания будут экспоненциальными. В действительности это не происходит. Недавно Kruk [57] показал, что и в теломерных участках хромосом имеет место репарация, хотя и менее интенсивная, чем в активных генах, но более интенсивная, чем во всех остальных. Martinez [69] показал наличие положительного влияния искусственного стимулирования репарации на продолжительность жизни. П. 6 : естественно, что возможна селекция по наследуемому признаку - длине теломер, а , следовательно, и по продолжительности жизни. Мы полагаем, что эта гипотеза противоречит п. 7: непонятно, как может быть низким коэффициент наследования длины теломер, почему эта длинна различается у животных инбредных линий и, тем более, у монозиготных близнецов [68]. Также не ясны причины возможного резкого изменения длины теломер при смене поколений.П. 9: эта гипотеза предсказывает наличие плато на кривых выживания при естественном старении, поскольку до тех пор, пока теломеры не будут разрушены, изменений в функционировании клеток, а, следовательно, жизнеспособности организма не будет.

П. 10 Однако принципиально иная картина должна, в согласии с гипотезой маргинотомии возникать при радиационном укорочении жизни. Эта гипотеза предсказывает наличие плато на кривых выживания при естественном старении, поскольку до тех пор, пока теломеры не будут разрушены до неких критических пределов, изменений в функционировании клеток, а, следовательно, жизнеспособности организма не будет. Однако принципиально иная картина должна, в согласии с гипотезой маргинотомии возникать при радиационном укорочении жизни.