Смекни!
smekni.com

по теме: Простаноиды и рецепторы к ним (стр. 5 из 5)

Для всех PG-рецепторов абсолютно консервативными являются 27 аминокислотных остатков; для PG-рецепторов человека — 28 аминокислотных остатков; для ЕP-рецепторов — 40 аминокислотных остатков. На основании этих результатов нельзя сделать каких-либо определенных выводов о пространственной структуре PG-рецепторов. Достоверное моделирование трехмерной структуры PG-рецепторов на основе данных рентгеноструктурного анализа для родопсина также невозможно.

Для Gs-связывающих белков консервативными являются 9 аминокислотных остатков, расположенные преимущественно в трансмембранных участках. Это свидетельствует о том, что для связывания с G-белком важна не столько аминокислотная последовательность соответствующих участков, сколько их пространственная структура.

Все вышесказанное демонстрирует, что исследование трансмембранных белков требует значительно более сложного подхода, чем просто анализ множественных выравниваний, сделанных автоматически. Необходимо редактирование выравниваний с учетом всех имеющихся экспериментальных данных. Для получения из выравниваний информации о функциональной важности участков белка требуется рассмотрение более сложных взаимозависимостей, чем одна только консервативность аминокислот. Одна из возможных методик анализа множественных выравниваний — СМА.

Использованная литература

1. Варфоломеев С. Д. Простагландины – новый тип биологических регуляторов. (1996) Соросовский Образовательный журнал.

2. Breyer R., Bagdassarian C., Myers S., Breyer M. (2001) Prostanoid Receptors: Subtypes and Signaling. Annu. Rev. Pharmacol. Toxicol. 41:661-90.

3. Геннис Р. Биомембраны: Молекулярная структура и функции. М., Мир, 1997.

4. Bockaert J., Pin J.P. (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. The EMBO Journal, Vol.18, No.7, pp. 1723-1729

5. Audoly L., Breyer R. (1997) Substitution of Charged Amino Acid Residues in Transmembrane Regions 6 and 7 Affect Ligand Binding and Signal Transduction of the Prostaglandin EP3 Receptor. Molecular Pharmacology, 51:61-68.

6. Audoly L., Breyer R. (1997) The Second Extracellular Loop of the Prostaglandin EP3 Receptor Is an Essential Determinant of Ligand Selectivity. The Journal of Biological Chemistry, Vol. 272, No. 21, Issue of May, pp. 13475-13478.

7. Horn F., Bettler E., Oliveira L., Campagne F., Cohen F., Vriend G. GRCRDB information system for G protein-coupled receptors. (2003) Nucleic Acids Research, Vol. 31, No. 1, pp. 294-297.

8. Oliveira L., Hulsen T., Lutje Hulsik D., Paiva A., Vriend G. Modelling G protein-coupled receptors. GRCRDB, http://www.gpcr.org/7tm/articles.

9. Oliveira L., Paiva A., Vriend G. Correlated Mutation Analyses on Very Large Sequence Families. GRCRDB, http://www.gpcr.org/7tm/articles/2002_3.

10. Oliveira L., Paiva P., Paiva A., Vriend G. Sequence analysis reveals how G protein-coupled receptors transduce the signal to the G protein. GRCRDB, http://www.gpcr.org/7tm/articles/2002_2.





Рис. 4. Филогенетическое древо для простаноидных рецепторов. Корень – EP3-рецептор человека. Получено с помощью программы BLAST (с сервера NCBI) по 34 белкам из базы данных SwissProt.

(“rec” означает “receptor”.)


Рис. 5. Филогенетическое древо для EP-рецепторов. Корень – EP4-рецептор человека.