Смекни!
smekni.com

Основные определения теории надежности (стр. 2 из 9)

Для удобства определения F(t) составлены таблицы. Значение функции распределения определяется формулой: F(t) = 0.5 + Ф(u) = Q(t)

U = (t – T)/

Вероятность отсутствия отказа за время t:

P(t) = 1 – Q(t) = 1 – (0.5 + Ф(u)) = 0.5 - Ф(u)

ИО монотонно возрастает и постепенно начинает приближаться к асимптоте:

y = (t – T)/

c2распределение.

Если CBt распределена по НЗ с Т = 0 и

= 1, то параметр X =
будет являться СВ с плотностью распределения:

где k- число степеней свободы; Г(k/2) – это g функция.

С увеличением kc2 распределение приближается в НР.

g функция от k/2 это

НР находит широкое применение в теории надежности. Например установлено, что описание удвоенного значения наработки изделия, отнесенное к среднему времени безотказной работы имеет c2 распределение, если время до отказа - СВ с экспоненциальным распределением.

Показатели готовности аппаратуры

характеризуют ее ожидаемую работоспособность и подготовленность к эксплуатации. Эти показатели являются комплексными, учитывающие в том числе требовательное обслуживание со стороны пользователя. В их число входят готовность к решению задачи VA, коэффициент использования аппаратуры VN и продолжительность состояния готовности.

Первый из показателей VA необходимо использовать для оценки состояния оконечных устройств, систем сбора и обработки данных, которые не включаются в цепь обратной связи системы. VA служит мерой готовности устройства, находящегося в ждущем режиме (до появления сигнала пуска) начинать работу в произвольный момент времени и выполнять ее в определенном интервале времени. VN характеризует обслуженные объекты с т.зр. их готовности к работе, в том числе при необходимости устранения отказов, если на это требуется незначительное время.

tB – среднее время эксплуатации объекта (наработка на отказ)

tR –время ремонта

tV – суммарная продолжительность простоя до ремонта и после него

tst – среднее время простоя

Продолжительность состояния готовности представляет собой комплексный показатель, который отражает возможность безотказного функционирования и готовность к обслуживанию (в том числе и к профилактическому), немедленно восстанавливаемых объектов, а так же затраты на их обслуживание. Этот показатель по существу есть вероятность готовности объекта к включению в работу в произвольный момент времени. Определяется:

VN и продолжительность готовности отличаются лишь показателем среднего времени ремонта tR и средним временем восстановления объекта tA. Пренебрегая tV можно определить коэффициент готовности контролируемых в процессе эксплуатации и немедленного восстанавливаемых объектов, с помощью выражения:

Прогнозирование показателей надежности

объектов основано на приближенных расчетах и получении приближенных значений показателей надежности путем исследования моделей или с учетом статистических оценок показателей надежности компонентов соответствующих технических средств. Вероятность безотказной работы системы или прибора во многом зависит от структуры их построения: последовательной или параллельной.

Полный отказ последовательной системы наступит в случае отказа хотя бы одного из ее компонентов. Полный отказ параллельной структуры наступит при отказе всех ее компонентов.

Здесь речь идет о логических моделях реальных систем, отличных от пространственно-геометрических построений и электрических схем этих систем. При расчетах надежности комбинированно-логической структуры (последовательно-параллельная, мостовая…) она приводится к одной из двух основных структур параллельной или последовательной. Для расчетов приближенных оценок показателей надежности и упрощения самих расчетов, используются постоянные во времени значения интенсивностей отказов компонентов: l(t) = l0 = const. При этом отказы получаются независящими друг от друга.

Расчеты показателей надежности систем с последовательной структурой

Вероятность Ps(t) безотказной работы системы, исходя из независимости отказов, определяется как произведение вероятностей отдельных событий

(1)

т.к.

то вероятность безотказной работы системы Ps(t) будет
.

Используя формулу связи Ps(t) и ИО P(t)=e-ltи формулу (1) можно записать, что ИО системы ls(t) =

(2)

Принимая во внимание, что среднее время наработки до отказа равно Т= tB= 1/l, получаем что среднее время до отказа для системы запишется:

(3)

оценки, получаемые по (1) (2) (3) являются заниженными. В этих выражениях не учитывается мероприятия, выполняемые для повышенной надежности систем. Например возможный контроль и компенсация погрешностей отдельных компонентов. При расчетах эти факторы м.б. учтены путем введения соответствующих поправочных коэффициентов. Для повышения точности расчетов оценок показателей надежности учитываются известные из опыта эксплуатации временные ресурсы, которые обозначим TFi, - работы i-тых отдельных компонентов. Поправочные коэффициенты ti в этом случае вычисляются по формуле:

(4)

где

– это среднее время реализации системой функции с участием i-того компонента. Тогда ИО
= liti (5)

Тогда более точное прогнозируемая оценка ИО системы запишется:

(6)

значение li представляет собой номинальную оценку ИО i-того компонента. Оценки показателей надежности полученные по (1) (2) (3) можно скорректировать с учетом (5) при использовании (6) предполагая, что если компонент системы не участвует в реализации данной функции, то в заданном интервале времени он не выходит из строя, т.е. ИО в паузе = 0. Такое допущение приемлемо для некоторых типов электромеханических элементов. Для активных полупроводниковых элементов ИО в паузе можно обозначить lР и во время функциональной загрузки (реализация задач, функций) lF примерно равны lР

lF. При их использовании для оценки ИО системы необходимо использовать (2). В реальных условиях эксплуатации электронной аппаратуры, функциональная загрузка отдельных компонентов оказывается различной, поэтому lF< lР. Если при реализации функции (задачи) i-тый компонент характеризуется ИО li, то с учетом пауз, в его загрузке эта интенсивность снижается в KPiраз. lPi = KPili причем 0
KPi
1.

Реальная продолжительность функционирования i-того элемента определяется выражением (4) с учетом которого можно записать выражение для вычисления более точной оценки ИО отдельного элемента:

= li[ti + KPi (1 - ti)] (7а)

ИО для системы из r элементов:

(7б)

Более точные оценки вероятности безотказной работы и среднего времени наработки до отказа можно получить из выражений (1) и (3) с учетом (7).

Поправочные коэффициенты KPiопределяют опытным путем или по результатам эксплуатации. Они зависят от характера функционирования элементов зависимости ИО компонентов системы, учитывающие влияние перечисленных факторов или функциональную загрузку компонентов.

Расчеты показателей надежности систем с параллельной структурой

Такие системы, благодаря резервированию компонентов, характеризуются повышенной избыточностью, а, следовательно, более высокой стоимостью, большими габаритными размерами и т.д.

Такие структуры, для построения систем сбора и обработки данных, применяются в случае необходимости их длительной безотказной работы. Вероятность безотказной работы системы с параллельной структурой запишется:

(1)