Смекни!
smekni.com

Содержание и значение математической символики (стр. 13 из 15)

Подобно приведенным предикатам-свойствам, математическая логика рассматривает более общее понятие предиката-отношения. В зависимости от того, между каким числом объектов устанавливается отношение, мы различаем двухместные (бинарные), трехместные (тернарные) и т. д., в общем случае – n-местные отношения. Рассмотренные выше предикаты-свойства считаются унарными предикатами. Наконец, оказывается удобным в понятие предиката-отношения как частный случай включить и высказывания в качестве «0 – местных предикатов».

Все математические дисциплины имеют дело с предикатами-отношениями, причем самыми распространенными являются бинарные отношения. Они описываются, различными словами: «равны», «не равны», «больше», «меньше», «делить», «перпендикулярны», «параллельны» и т. д.

По аналогии с предикатом-свойством двухместным предикатом считается опять функция, на этот раз от двух аргументов, определенных на некотором универсальном множестве, принимающая значение и (истинно) и л (ложно): те пары элементов, для которых функция принимает значение и, находятся в рассматриваемом отношении, остальные пары в этом отношении не находятся.

Рассмотрим пример бинарного отношения, определенного на множестве натуральных чисел, а именно отношение, описываемое словом «больше». Если рассматривать это отношение как функцию от двух переменных X и Y (на множестве натуральных чисел), принимающую значения и или л в зависимости от того, будет ли соответствующее отношение выполняться или нет, то эта функция определяет предикат, который обозначим через > (X, Y). Тогда имеем, например, > (3, 2) = и, > (1, 3) = л, > (7, 5) = и и т. д. Более полно и обозримо двухместный предикаты >(Х, Y).

1 2 3 4 5
1 л и и и и
2 л л и и и
3 л л л и и
4 л л л л и
5 л л л л л

Конечно, совсем нетрудно указать в элементарной математике примеры трехместных предикатов и предикатов от еще большего числа аргументов. Так, трехместным предикатом является в геометрии отношение, описываемое словом «между»: «Точка Y лежит между точками Xи Z». В арифметике хорошо известны понятия наибольшего общего делителя и наименьшего общего кратного двух целых чисел: фраза «Число d является наибольшим общим делителем чисел а и b» описывает трехместный предикат. Трехместные предикаты на множестве действительных чисел задают действия сложения, вычитания, умножения и деления: X + Y = Z, X – У = Z, X • Y = Z, X : Y = Z. Примером четырехместного предиката может служить отношение между членами пропорции X : Y = Z : W

Ознакомившись с понятием предиката, мы переходим теперь к рассмотрению операций, позволяющих из некоторых исходных предикатов строить новые. Начнем изучение с простейшего случая одноместных предикатов. Пусть Р (X) и Q (X) – два одноместных предиката, определенных на некотором множестве М. С помощью операций алгебры высказываний мы можем строить новые предикаты на множестве М. Конъюнкция Р (X)ÙQ (X) – это предикат R1(X) = Р(X)ÙQ(X), который истинен для тех объектов а из М, для которых оба предиката Р(X) и Q(X) истинны. Аналогично определяется дизъюнкция Р(X)ÚQ(X):R2(X) = Р(X)ÚQ(X) – это предикат на М, который истинен в точности для тех а

М, для которых истинен по меньшей мере один из предикатов Р (X) и Q (X). Так же определяется отрицание ùР (X): R3(X) = ùР(X) – предикат на М, истинный для тех и только тех а Î М, для которых Р (X) ложен.

4.2.2 Кванторы.

В алгебре предикатов наряду с операциями логики высказываний важнейшую роль играют операции, называемые кванторами. Именно употребление кванторов делает алгебру предикатов значительно более богатой, чем алгебру высказываний. Кванторы соответствуют по смыслу тому, что на обычном языке выражается словами «все» («для каждого», «для всех» и т. п.) и «существует» («некоторый», «найдется» и т. п.).

Понятие, обозначаемое словом «все», лежит в основе квантора всеобщности (или квантора общности). Если через Гр (X) обозначен предикат «X есть грек», определенный на множестве М всех людей, то из этого предиката с помощью слова «все» мы можем построить высказывание «Все люди – греки» (конечно, ложное высказывание). Это пример применения квантора всеобщности.

Вообще же квантор всеобщности определяется так. Пусть Р (X) – какой-нибудь предикат. Тогда квантор всеобщности – это операция, которая сопоставляет Р (X) высказывание

«Все X обладают свойством Р (X)». (*)

Для этой операции («все») употребляется знак

(перевернутая латинская буква А, напоминающая о немецком слове «alle» или английском «all» – все). Высказывание (*) записывается так:
(X)P(X) (читается: «для всех X Р от X»). В соответствии со смыслом слова «все»
(X)Р(X) – ложное высказывание, кроме того единственного случая, когда Р (X) тождественно-истинный предикат.

Наряду с квантором всеобщности в логике предикатов рассматривается другой квантор – «двойственный» ему квантор существования, обозначаемый знаком

(это перевернутая латинская буква E, напоминающая немецкое слово «existieren» или английское «exist» — существовать):

(Х)Р(Х)

(читается: «существует такое X, что Р от X») – высказывание, которое истинно тогда и только тогда, когда Р истинно по меньшей мере для одного объекта а из области определения М. Тем самым

(X)Р(X) – истинное высказывание для всех предикатов Р (X), кроме одного – тождественно-ложного.

Между кванторами

и
имеют место отношения равносильности, позволяющие сводить любой из этих кванторов к другому: ù
(X) P(X) Û
(X) ùP(X) («Неверно, что все Xобладают свойством Р (X)» равносильно тому, что «Существует такой объект X, для которого истинно не Р (X)»). Отсюда имеем:
(X) Ûù
(X)ùP(X). Аналогично, имеет место двойственный закон: ù
(X) P(X) Û
(X)ùP(X). («Неверно, что существует X, обладающее свойством Р (X)» равносильно «Все X обладают свойством не Р (X)»).

Отсюда

(X)Р(X)Ûù
(X)ùP(X). Эти равносильности называют правилами де Моргана для кванторов.

С помощью квантора существования легко выражается суждение типа «Некоторые Р суть Q» (например, «Некоторые англичане курят», «Некоторые нечетные числа – простые» и т. п.), т. е. что по крайней мере один объект а, обладающий свойством Р, обладает также свойством Q. Этот факт записывается формулой

(X)(Р(X)ÙQ(X)) («Существует такой X, что Р от X и Q от X»).

Аналогично с помощью кванторов записывается ряд других отношений между одноместными предикатами.

Гораздо более богатые возможности открывает применение кванторов к многоместным предикатам. Остановимся вкратце на этом вопросе.

Пусть А (X, Y) – некоторый двухместный предикат, определенный на некотором множестве М. Квантор всеобщности и квантор существования можно применять к нему как для переменной X, так и для переменной Y:

(X)А(X, У);
(Y)А(X, Y);
(X)А(Х,Y);
(Y)A(X,Y). Переменная, к которой применен квантор, называется связанной, другая переменная – свободной. Все четыре приведенных выражения являются записями одноместных предикатов от соответствующей свободной переменной.
(X)А(X,Y) (читается: «для всех X, A от X и Y») – одноместный предикат от переменной Y:
(X)А (X,Y)=F(У), Он истинен в точности для тех bÎМ, для которых одноместный предикат А (X, b) истинен для всех X. Если представить предикат А (X, Y) его таблицей, то предикат F (Y) =
(X) (X, Y) истинен для тех b, для которых столбец с входом b содержит исключительно букву и.

Применение квантора к одной из переменных двухместного предиката превращает его в одноместный. В случае трехместных предикатов применение квантора приводит к двухместному предикату. Аналогично и для предикатов с большим числом мест применение квантора превращает n-местный предикат в (n – 1)-местный.