Смекни!
smekni.com

Пирамида (стр. 3 из 4)

    Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Доказательство:

Боковые грани правильной пирамиды – равные равнобедренные треугольники, основания которых – стороны основания пирамиды, а высоты равны апофеме. Площадь Sбоковой поверхности пирамиды равна сумме произведений сторон основания на половину апофемы d. Вынося множитель

за скобки, получим в скобках сумму сторон основания пирамиды, т.е. его периметр.
    Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

Задачи.

Задача №1

Построим линию пересечения плоскости грани МАВ пирамиды МАВCD с плоскостью грани MCD.

Решение: Плоскости МАВ и MCD имеют по условию общую точку М. Значит, по аксиоме (если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку) они пересекаются по прямой, проходящей через точку М. Найдем еще одну общую точку этих плос­костей. В соответствии с условием прямые АВ и CD лежат в одной плоскости. Построим точку их пересечения:

Точка F принадлежит прямой АВ, две точки которой лежат в плоско­сти МАВ. Тогда по аксиоме (Если две точки прямой принадлежат плоскости, то все точки прямой, определяемой ими, лежат в этой плоскости) и точка F лежат в плоскости МАВ.

Аналогично заключаем, что точка F лежит и в плоскости MCD. Та­ким образом, точка F — это вторая общая точка плоскостей МАВ и MCD. Итак, прямая MF — это искомая линия пересечения плоскостей МАВ и MCD.

Задача №2

На ребре МА пирамиды MABCD взята точка Р, а в ее гранях MCD и МВС — соответственно точки Q и R. Построим основной след секущей плоскости

, проходящей через точки Р, Q и R.

Решение: 1) Построим точки Р', Q' и R' — проекции соответ­ственно точек Р, Q и R на плоскость ABC из центра М. Ясно, что точка Р' совпадает с точкой

,
.

Так как прямые МР и MQ пересекаются, то по теореме (Через две пересекающиеся прямые проходит плоскость, и притом одна) через них
проходит плоскость. По теореме этой плоскости принадлежат пря­мые PQ и P'Q'. Построим точку

.

Так как точка

лежит на прямой PQ, две точки которой принадлежат плоскости
, то по аксиоме (Если две точки прямой принадлежат плоскости, то все точки прямой, определяемой ими, лежат в этой плоскости) точка
принадлежит плоскости
. Аналогично заключаем, что точка
принадлежит плоскости ABC. Итак, плоскости
и ABC имеют общую точку
. Тогда по аксиоме (если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку) эти плоскости пересекаются по прямой, проходящей через точку

Построим еще одну общую точку плоскостей а и ABC. Например,
точку

.Проведем прямую
Так как точки
этой прямой лежат в плоскости
, то по аксиоме (Если две точки прямой принадлежат плоскости, то все точки прямой, определяемой ими, лежат в этой плоскости) прямая
лежит в плоскости
. Анало­гично приходим к выводу, что прямая
лежит в плоскости ABC. Таким образом, прямая
— это линия пересечения плоскости а с плоскостью ABC, т.е. она является основным следом плоскости
.

Задача №3

Центр верхнего основания куба с ребром, равным

, соединен с серединами сторон нижнего основания, которые также соединены в последовательном порядке. Вычислить полную поверхность полученной пирамиды.

Решение: Так как ребро куба равно а, то сторона основания пирамиды

SABCD равна

Учитывая, что ОК =
, найдём апофему пирамиды:

Значит,

,

Ответ:

Задача №4

Апофема правильной шестиугольной пирамиды равна h, а двугранный угол при основании равен

. Найти полную поверхность пирамиды.

Решение: Так как

, то
.

Основание пирамиды – правильный шестиугольник, поэтому

и

. Тогда
, т.е.
,

. Таким образом,
,

Окончательно находим

Ответ:

Задача №5

В основании пирамиды лежит квадрат. Две боковые грани перпендикулярны плоскости основания, а две другие наклонены к нему под углом

. Среднее по величине боковое ребро равно
. Найти объём и полную поверхность пирамиды.

Решение: По условию,

,
,
. Откуда
.

Находим

.

Полная поверхность выразится так:

, поскольку

,
.

Но

,

Итак,

Ответ:

;
.