Смекни!
smekni.com

СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ В ЛИНЕЙНОЙ ЗАДАЧЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ (стр. 4 из 7)

D=STS=S2, S-1DS-1=I. (22)

Определим матрицу

U=AVS-1 (23)

Из (21), (22), (23) и ортогональности V следует, что

UTU=S-1VTATAVS-1=S-1DS-1=I т.е. U ортогональна. Из (23) и ортогональности V выводим USVT=AVS-1SVT=AVVT=A Лемма доказана.

Доказательство теоремы 5. Пусть A=HRKT, где H, R, KT имеют свойства, указанные в теореме 4. Так как R11 из (19) – невырожденная треугольная к´к–матрица, то согласно лемме 2 , можно написать

(24)

Здесь

и
– ортогональные к´к–матрицы, а
– невырожденная диагональная матрица, диагональные элементы которой положительны и не возрастают. Из (24) следует, что матрицу R в уравнении (19) можно записать в виде

(25)

где:

– ортогональная m´m–матрица;

– ортогональная n´n–матрица;

– ортогональная m´n–матрица;

Теперь, определяя U и V формулами

(26)

заключаем из (24) – (26), что A=USVT, где U, S, V имеют свойства, указанные в формулировке теоремы 5. Это завершает доказательство.

Заметим, что сингулярные числа матрицы А определены однозначно, в то время, как в выборе ортогональных матриц U, V есть произвол. Пусть s – сингулярное число А, имеющее кратность l. Это значит, что для упорядоченных сингулярных чисел найдется индекс I такой, что

Положим k=min(m,n), и пусть Q – ортогональная к´к–матрица вида

Здесь Р – ортогональная l´l–матрица Если A=USVT – сингулярное разложение А и si=…=si+l-1, то сингулярным разложением А будет также и

, где
.

1.6. Число обусловленности

Некоторые вычислительные задачи поразительно чувствительны к изменению данных. Этот аспект численного анализа не зависит от плавающей арифметики или выбранного алгоритма.

Например:

Найти корни полинома: (x-2)2=10-6

Корни этого уравнения есть 2+10-3 и 2-10-3. Однако изменение свободного члена на 10-6 может вызвать изменение в корнях, равное 10-3.

Операции с матрицами, как правило, приводят к решению систем линейных уравнений. Коэффициенты матрицы в правой части системы линейных уравнений редко известны точно. Некоторые системы возникают из эксперимента, и тогда коэффициенты подвержены ошибкам наблюдения. Коэффициенты других систем записываются формулами, что влечет за собой ошибки округлений. В связи с этим необходимо знать, как влияют ошибки в коэффициентах матрицы на решение. Именно для этого вводится понятие обусловленности матрицы.

По определению число обусловленности есть величина

. Для более подробного описания числа обусловленности нам понадобится понятие нормы в пространстве векторов и матриц.

Нормой вектора x в пространстве векторов

называется функционал, обозначаемый
, удовлетворяющий следующим условиям:

1) положительной определенности –

2) положительной однородности –

;

3) неравенству треугольника –

.

Нормой квадратной матрицы А в пространстве матриц, согласованной с нормой вектора

называется функционал
, удовлетворяющий условиям 1 – 3 для нормы вектора:

1)

;

2)

3)

4) мультипликативное неравенство –

Наиболее употребимы следующие нормы для векторов:

· норма суммы модулей

· евклидова норма

· норма максимума модуля

Нормы матриц:

·

·

·

Здесь

являются сингулярными числами[3] матрицы А; это положительные значения квадратных корней
из собственных значений
матрицы АТА (которая при невырожденной матрице А положительно определена[4], в противном случае положительно полуопределена (неотрицательно определена[5]) и поэтому имеет только вещественные собственные значения ³ 0). Для вещественных симметричных матриц сингулярные числа равны абсолютным величинам собственных значений:
.

Умножение вектора х на матрицу А приводит к новому вектору Ах, норма которого может очень сильно отличаться от нормы вектора х.

Область изменений может быть задана двумя числами

Максимум и минимум берутся по всем ненулевым векторам. Заметим, что если А вырождена, то m=0. Отношение M/m называется числом обусловленности матрицы А,

(7)

Рассмотрим норму обратной[6] матрицы

.

Для матрицы А существует сингулярное разложение

, тогда
, отсюда
. Аналогично для обратной матрицы
и
. Отсюда следует, что собственные числа матрицы
– 1/ есть величины, обратные собственным числам матрицы
– . При этом очевидно, что
. Из последнего выражения вместе с (7) следует
. Таким образом обусловленность матрицы равна произведению нормы матрицы на норму обратной матрицы.

Рассмотрим систему уравнений Ax=b, и другую систему, полученную изменением правой части: A(x+Dx)=b+Db . Будем считать Db ошибкой в b, а Dx соответствующей ошибкой в x, хотя нам нет необходимости считать ошибки малыми. Поскольку A(Dx)=Db, то определения M и m немедленно приводят к неравенствам

Следовательно , при m¹0,

Величина

есть относительное изменение правой части, а величина
– относительная ошибка, вызванная этим изменением. Аналогичные выкладки можно провести не только с элементами вектора правой части но и с элементами самой матрицы А и найти зависимость между относительным изменением элементов матрицы и относительной ошибкой вызванной этим изменением. Отсюда следует, что число обусловленности выполняет роль множителя в увеличении относительной ошибки.