Смекни!
smekni.com

Теория вероятностей (стр. 2 из 7)

где n и m - число случаев появления событий А и В соответственно при N испытаниях.

Противоположные события также являются несовместными и образуют полную группу. Отсюда, с учетом: P(

) = 1 - Р(А).

Рис. 8.2.4.

В общем случае для группы несовместных событий: P(A+B+...+N) = P(A) + P(B) + ... + P(N),

если все подмножества принадлежат одному множеству событий и не имеют общих точек (попарно несовместны). А если эти подмножества образуют полную группу событий, то с учетом: P(A) + P(B) + ... + P(N) = 1. (8.2.7)

Рис. 8.2.5.

Совместные события. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления : P(A+B) = P(A) + P(B) - P(A×B).

Разобьем события А и В каждое на два множества, не имеющие общих точек: А', A'' и B', B''. Во множества А'' и B'' выделим события, появляющиеся одновременно, и объединим эти множества в одно множество С. Для этих множеств действительны выражения:

С = A''×B'' º А'' º В'' º А×В, P(C) = P(A'') = P(B'') = P(A×B).

P(A) = P(A')+P(A''), P(A') = P(A)-P(A'') = P(A)-P(A×B).

P(B) = P(B')+P(B''), P(B') = P(B)-P(B'') = P(B)-P(A×B).

Множества A', B' и С не имеют общих точек и можно записать:

P(A+B) = P(A'+B'+C) = P(A') + P(B') + P(С).

Подставляя в правую часть этого уравнения вышеприведенные выражения, приходим к выражению (8.2.8). Физическая сущность выражения достаточно очевидна: суммируются вероятности событий А и В и вычитаются вероятности совпадающих событий, которые при суммировании сосчитаны дважды.

В общем случае, для m различных событий А1, А2, ..., Аm:

P(A1+...+ Am) =

P(Ai) -
P(Ai×Aj) +
P(Ai×Aj×Ak) -...+(-1)m+1P(A1×A2× ... ×Am). (8.2.9)

Рис. 8.2.6.

На рис. 8.2.6 на примере трех пространств можно видеть причины появления в выражении (8.2.9) дополнительных сумм вероятностей совпадающих пространств и их знакопеременности. При суммировании вероятностей пространств А,В и С, имеющих общее пространство АВС, его вероятность суммируется трижды, а при вычитании вероятностей перекрывающихся подпространств АВ, АС и ВС трижды вычитается (т.е. обнуляется), и восстанавливается дополнительным суммированием с вероятностью пространства АВС.

Вопрос 6

1) Условная вероятность события А при условии В равна Р(А/B)=P(A*B)/P(B), Р(В)>0.

2) Событие А не зависит от события В, если Р(А/B)=P(A). Независимость событий взаимна, т.е. если событие А не зависит от В, то событие В не зависит от А. В самом деле при Р(А)>0 имеем Р(B/A)=P(A*B)/P(A)=P(A/B)*P(B)/P(A)=P(A)*P(B)/P(A)=P(B). Вытекает следующая формула умножения вероятностей: Р(А*В)=Р(А)*Р(В/A). Для независимых событий вероятность произведения событий равна произведению их вероятностей: Р(А*В)=Р(А)*Р(В). 3) События А1,А2,…,Аn образуют полную группу событий, если они попарно несовместны и вместе образуют достоверное событие, т.е. Аi*Aj=0, i не=j, U по i от 1 до n Аi=омега.

Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило: Р(АВ)=Р(А)*Ра(В). В частности для независимых событий Р(АВ)=Р(А)*Р(В), т.е. вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий.

Вопрос 7

Формула полной вероятности. Систему событий А1, А2, ...,AN называют конечным разбиением (или просто разбиением), если они попарно несовместны, а их сумма образует полное пространство событий: А1 + А2 + ... + АN = W.

Если события Аi образуют разбиение пространства событий и все P(Ai) > 0, то для любого события В имеет место формула полной вероятности: P(B) =

P(Ak)×P(B/Ak),

что непосредственно следует из (8.2.14) для попарно несовместных событий:

B = B×W = BA1+BA2+...BAN.

P(B) = P(BA1)+P(BA2)+... +P(BAN) = P(A1)P(B/A1)+P(A2)P(B/A2)+...+P(AN)P(B/AN).

Вопрос 8

Вопрос 9

Вопрос 10

Случайной величиной называется числовая величина, которая в результате опыта может принять какое-либо значение из некоторого множества, причем заранее, до проведения опыта, невозможно сказать, какое именно значение она примет. Случайные величины обозначают заглавными латинскими буквами X, Y, Z,..., а их возможные значения — строчными латинскими буквами х, у, z. Случайная величина называется дискретной, если множество ее значенийконечно или счетно, и непрерывной в противном случае. Законом распределения случайной величины называется любое со­отношение, связывающее возможные значения этой случайной ве­личины и соответствующие им вероятности. Закон распределения дискретной случайной величины задается чаще всего не функцией распределения, а рядом распределения, т.е, таблицей

Х x1 x2 ... xn ...
P p1 p1 ... pn ...

В которой x1, x2, ..., xn, ... - расположенные по возрастанию значения дискретной случайной величины X, а р1, р2, ..., рп, ... — отвечающие этим значениям вероятности: pi = Р{Х = хi), i= 1, 2, ..., п, ... . Число столбцов в этой таблице может быть конечным (если соответствующая случайная величина принимает конечное число значений) или бесконечныи. Очевидно,Spi= 1.

Многоугольником распределения дискретной случайной величины Xназывается ломаная, соединяющая точки {xi; pi), расположенные в Порядке возрастания хi.

Вопрос 11

Функцией распределения случайной величины Х называется функция FX(x)= P{X<x}, xÎR

Под {X<x}понимается событие, состоящее в том, что случайная величина Х принимает значение меньшее, чем число х. Если известно, о какой случайной величине идёт речь, то индекс, обозначающий эту случайную величину, опускается: F(x) ºFX(x).

Как числовая функция от числового аргумента х, функция распределения F(x) произвольной случайной величины Х обладает следующими свойствами:

1)для любого xÎR: 0£F(x) £ 1

2) F(-¥) = limx®¥F(x) = 0 ; F(+¥) = limx®¥F(x) = 1;

3) F(x)-неубывающая функция, т.е.для любых х1,х2 ÎR таких, что х1<х2: F(x1) £F(x2);

4)для любого xÎR: F(x)= F(x-0)= limz<x,z®xF(z).

Вопрос 12

Мат. Ожиданием Д.С.В. называют сумму произведений всех ее возможных значений на их вероятности: М(Х)=х1р1+х2р2+…+хnpn. Если Д.С.В. принимает счетное множество возможных значений, то М(Х)=сумма по i от 1 до бесконечности xipi, причем мат. ожидание существует, если ряд в правой части равенства сходится абсолютно. Мат. ожидание обладает следующими свойствами: 1) Мат. ожидание постоянной величины равно самой постоянной: М(С)=С. 2) Постоянный множитель можно выносить за знак мат. ожидания: М (СХ)=СМ (Х). 3) Мат. ожидание произведения взаимно независимых С.В. равно произведению мат. ожиданий сомножителей: М (Х1,Х2…Хn)=M(X1)*M(X2)…M(Xn). 4) Мат. ожидание суммы С.В. равно сумме мат. ожиданий слагаемых: М (Х1+Х2+Х3+…+Хn)=M(X1)+M(X2)+M(X3)+…+M(Xn).

Вопрос13

Дисперсией случайной величины х называется число: DX= M(X-MX)2 ,равное математическому ожиданию квадрата отклонения случайной величины от своего математического ожидания. Для вычисления дисперсии иногда проще использовать формулу: DX=M(X2)-(MX)2 . Для дискретных св:

DX=∑(xi – MX)2pi;

DX=xi2pi – (MX) 2.

Свойства дисперсии дискретной случайной величины: (X,Y-независимые д.св, с- неслучайная постоянная ÎR)

Dc=0;

D(cX)=c2DX;

D(X+Y)= DX + DY

Вопрос 14

Биномиальным называют закон распределения Д.С.В. Х - числа появлений события в n независимых испытаниях, в каждом из которых вероятность появления события равна р, вер-ть возможного значения Х=k (числа k появлений события) вычисляют по формуле Бернулли: Pn (k)=Cn^k* p^k *q^(n-k)

Вопрос 15