Смекни!
smekni.com

Теория вероятностей (стр. 4 из 7)

Свойство «отсутствия последействия» состоит в том, что вероят­ность появления kсобытий в любом промежутке времени не зависит от того, появлялись или не появлялись события в моменты времени, предшествующие началу рассматриваемого промежутка. Другими словами, предыстория потока не влияет на вероятности появле­ния событий в ближайшем будущем.

Свойство ординарности состоит в том, что появление двух или более событий за малый промежуток времени практически невозможно. Другими словами, вероятность появления более одного со­бытия за малый промежуток времени пренебрежимо мала по срав­нению с вероятностью появления только одного события.

Интенсивностью потока lназывают среднее число событий, которые появляются в единицу времени.

Если постоянная интенсивность потока l известна, то вероят­ность появления kсобытий простейшего потока за время tопреде­ляется формулой Пуассона

Замечание. Поток, обладающий свойством стационарности, называют стационарным; в противном случае—нестационарным.

Вопрос 23

(на отдельном листе)

Вопрос 24

Н.С.В. Х имеет нормальное распределение вероятностей с параметром а и сигма>0, если ее плотность распределения имеет вид: р(х)=1/(корень квадратный из 2пи *сигма) * е в степени –1/2*(x-a/сигма)*2. Если Х имеет нормальное распределение, то будем кратко записывать это в виде Х прибл. N(a,сигма). Так как фи(х)=1/(корень из 2пи)*е в степени –х*2/2 – плотность нормального закона распределения с параметрами а=0 и сигма=1, то функция Ф(х)=1/(корень из 2пи)* интеграл от –бесконечности до х е в степени –t*2/2dt, с помощью которой вычисляется вероятность P{a<=мюn-np/(корень из npq)<=b}, является функцией распределения нормального распределения с параметрами а=0, сигма=1.


Вопрос 25

Функцией (или интегралом вероятностей) Лапласа называется функция

При решении задач, как правило, требуется найти значение функции по известному значению аргумента или, наоборот, по известному значению функции требуется найти значение аргумента. Для этого пользуются таблицей значений функции Лапласа и учитывают следующие свойства функции

10. Функция Лапласа нечётная, т.е.

20. Функция Лапласа монотонно возрастающая, причём ( практически можно считать, что уже при

. Так при
).

Вопрос 26

Неравенство Чебышева: Если известна дисперсия С.В., то с ее помощью можно оценить вероятность отклонения этой величины на заданное значение от своего мат. ожидания, причем оценка вероятности отклонения зависит лишь от дисперсии. Соответствующую оценку вероятности дает неравенство Чебышева. Неравенство Чебышева является частным случаем более общего неравенства, позволяющего оценить вероятность события, состоящего в том, что С.В. Х превзойдет по модулю произвольное число t>0. P{|XMX|>=t}<=1/t*2 M(XMX)*2=1/t*2 DX – неравенство Чебышева. Оно справедливо для любых С.В., имеющих дисперсию; оценка вероятности в нем не зависит от закона распределения С.В. Х.

Под законом больших числе понимается обобщенное название группы теорем, утверждающих, что при неограниченном увеличении числа испытаний средние величины стремятся к некоторым постоянным.

Теорема Чебышева: Если последовательность попарно независимых С.В. Х1,Х2,Х3,…,Xn,… имеет конечные мат. ожидания и дисперсии этих величин равномерно ограничены (не превышают постоянного числа С), то среднее арифметическое С.В. сходится по вероятности к среднему арифметическому их мат. ожиданий, т.е. если эпселен – любое положительное число, то: lim при n стремящемся к бесконечности P(|1/n сумма по i от 1 до nXi – 1/n сумма по i от 1 до nM(Xi)|<эпселен)=1. В частности, среднее арифметическое последовательности попарно независимых величин, дисперсии которых равномерно ограничены и которые имеют одно и тоже мат. ожидание а, сходится по вероятности к мат. ожиданию а, т.е. если эпселен – любое положительное число, то: lim при n стремящемся к бесконечности P(|1/n сумма по i от 1 до nXi – a|<эпселен)=1.

Теорема Бернулли: Если вероятность успеха в каждом из п независимых испытаний постоянна и равна р, то для произвольного, сколь угодно малого ε > 0 справедливо предельное равенство

где т — число успехов в серии из п испытаний.

Вопрос 27

Локальная теорема Лапласа. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р(0<p<1), событие наступит ровно k раз (безразлично, в какой последовательности), приближенно равна (тем точнее, чем больше n). Pn(k)=1/(корень из npq)*фи(х). Здесь Фи(х)=1/(корень из 2пи)*е в степени –х*2/2, x=knp/(корень из npq). Интегральная теорема Лапласа. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р(0<p<1), событие наступит не меньше k1 раз и не более k2 раз, приближенно равна: P(k1;k2)=Ф(х’’) – Ф(х’). Здесь Ф(х)=1/(корень из 2пи) * интеграл от0 до х е в степени –(z*2/2)dz – функция Лапласа, х’=(k1 – np)/(корень из npq), х’’=(k2 – np)/(корень из npq).

Вопрос 28

Двумерной называют С.В. (Х,Y), возможные значения которой есть пары чисел (x,y). Составляющие Х и Y, рассматриваемые одновременно, образуют систему двух С.В. Дискретной называют двумерную величину, составляющие которой дискретны. Непрерывной называют двумерную величину, составляющие которой непрерывны. Законом распределения Д.С.В. называют соответствие между возможными значениями и их вероятностями. Функция распределения вероятностей Д.С.В. называют функцию F(X,Y), определяющую для каждой пары чисел (х,y) вероятность того, что Х примет значение, меньшее х, при этом Y примет значение, меньшее y: F(x,y)=P(X<x,Y<y). Свойства:1) Значения функции распределения удовлетворяют двойному неравенству: 0<=F(x,y)<=1. 2) Функция распределения есть неубывающая функция по каждому аргументу:F(x2,y)>=F(x1,y), если х2>x1. F(x,y2)>=F(x,y1), если y2>y1. 3) Имеют место предельные соотношения: 1) F(-бесконечность, у)=0, 2) F(x,-бесконечность)=0, 3) F(-бесконечность, -бесконечность)=0, 4) F(бесконечность, бесконечность)=1. 4) а) при у=бесконечность функция распределения системы становится функцией распределения составляющей Х: F(x,бесконечность)=F1(x). Б) при х=бесконечность функция распределения системы становится функцией распределения составляющей У: F(бесконечность, у)=F2(y).

Вопрос 29

Вопрос 30

Корреляционным моментом СВ x и h называется мат. ожидание произведения отклонений этих СВ. mxh=М((x—М(x))*(h—М(h)))

Для вычисления корреляционного момента может быть использована формула:

mxh=М(x*h)—М(x)*М(h) Доказательство: По определению mxh=М((x—М(x))*(h—М(h))) По свойству мат. ожидания

mxh=М(xh—М(h)—hМ(x)+М(x)*М(h))=М(xh)—М(h)*М(x)—М(x)*М(h)+М(x)*М(h)=М(xh)—М(x)*(h)

Предполагая, что x и h независимые СВ, тогда mxh=М(xh)—М(x)*М(h)=М(x)*М(h)—М(x)*М(h)=0; mxh=0. Можно доказать, что если корреляционный момент=0, то СВ могут быть как зависимыми, так и независимыми. Если mxh не равен 0, то СВ x и h зависимы. Если СВ x и h зависимы, то корреляционный момент может быть равным 0 и не равным 0. Можно показать, что корреляционный момент характеризует степень линейной зависимости между составляющими x и h. При этом корреляционный момент зависит от размерности самих СВ. Чтобы сделать характеристику линейной связи x и h независимой от размерностей СВ x и h, вводится коэффициент корреляции:

Кxh=mxh/s(x)*s(h) Коэффициент корреляции не зависит от разностей СВ x и h и только показывает степень линейной зависимости между x и h, обусловленную только вероятностными свойствами x и h. Коэффициент корреляции определяет наклон прямой на графике в системе координат (x,h) Свойства коэффициента корреляции.