Смекни!
smekni.com

Некоторые характеристики и свойства микрообъектов (стр. 8 из 8)

Один из вариантов модели волны-пилота рассмотрен в книге Д. Бома: “Сначала постулируем, что с частицей (например, электроном) связано “тело” , занимающее малую область пространства; в большинстве применений на ядерном уровне его можно рассматривать как материальную точку. В качестве следующего шага предположим, что с “телом” связана волна, без которой тело не обнаруживается. Эта волна представляет собой колебания некоего нового поля (ψ-поля) , до некоторой степени похожего на гравитационное и электромагнитное, но имеющее свои собственные характерные черты. Далее предполагаем, что ψ-поле и “тело” взаимодействуют. Это взаимодействие должно будет приводить к тому, что “тело” будет стремится находится в области, где интенсивность ψ-поля имеет наибольшее значение. Осуществлению этой тенденции движения электрона мешают неупорядоченные движения, испытываемые телом, которые могли бы возникнуть, например, в следствие флуктуаций самого ψ-поля. Флуктуации вызывают тенденцию блуждания “тела” по всему доступному ему пространству. Но осуществлению этой тенденции мешает наличие “квантовой силы” которая устремляет “тело” в области, где интенсивность ψ-поля наиболее высока. В итоге получим какое-то распределение “тел” , преобладающее в областях с наибольшей интенсивностью ψ-поля.”

Не исключено, что подобные модели могут показаться с первого взгляда привлекательными – хотя бы в силу своей наглядности. Однако необходимо сразу же подчеркнуть – все эти модели не состоятельны. Мы не будем выявлять, в чем именно заключается несостоятельность рассмотренной модели волны-пилота; отметим лишь громоздкость этой модели, использующей такие искусственные понятия, как “ψ-поле” , которое “до некоторой степени походе на гравитационное и электромагнитное” , или “квантовая сила” , отражающая взаимодействие некоего “тела” с ψ-полем. Однако несостоятельность подобных моделей объясняется не частными, а глубокими, принципиальными причинами. Следует заранее признать безуспешной всякую попытку буквального толкования корпускулярно-волнового дуализма, всякую попытку каким-то образом смоделировать симбиоз корпускулы и волны. Микрообъект не является симбиозом корпускулы и волны.

Как следует понимать корпускулярно-волновой дуализм? В настоящее время корпускулярно-волновой дуализм понимают как потенциальную способность микрообъекта проявлять различные свои свойства в зависимости от тех или иных внешних условий, в частности, условий наблюдения. Как писал Фок, “у атомных объектов в одних условиях выступают на передний план волновые свойства, а в других – корпускулярные; возможны и такие условия, когда и те, и другие свойства выступают одновременно. Можно показать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как частица, либо как волна, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна-частица. Всякое иное, более буквальное понимание этого дуализма в виде какой-либо модели неправильно.” Приведем простейший пример. Пусть пучок электронов проходит сквозь экран с щелями и затем попадает на экран-детектор. При прохождении через щели электроны реализуют свои волновые свойства, что обуславливает характерное для интерференции распределение электронов за щелями. При попадании же на экран-детектор электроны реализуют свои корпускулярные свойства – каждый из них регистрируется в некоторой точке экрана. Можно сказать, что электрон проходит сквозь щель как волна, а регистрируется на экране как частица.

В связи с этим говорят при одних обстоятельствах, что “микрообъект есть волна” , а при других – “микрообъект есть частица” . Такая трактовка корпускулярно-волнового дуализма неправильна. Независимо ни от каких обстоятельств микрообъект не является ни волной, ни частицей, ни даже симбиозом волны и частицы. Это есть некий весьма специфический объект, способный в зависимости от обстоятельств проявлять в той или иной мере корпускулярные и волновые свойства. Понимание корпускулярно-волнового дуализма как потенциальной способности микрообъекта проявлять в различных внешних условиях различные свойства есть единственно правильное понимание. Отсюда, в частности, следует вывод: наглядная модель микрообъекта принципиально невозможна. Электрон в атоме. Отсутствие наглядной модели микрообъекта отнюдь не исключает возможности использования условных образов, вполне пригодных для представления микрообъекта в тех или иных условиях. В качестве примера рассмотрим электрон в атоме.

Напомним, что состояние электрона в атоме описывается набором квантовых чисел: n, l, m, σ. Данное состояние характеризуется определенной энергией, которая в частном случае атома водорода, зависит только от числа n, а в более общем случае – от чисел n и l. Электрон в атоме пространственно делокализован – его координаты имеют неопределенность порядка размеров атома. Обычно при рассмотрении электрона в атоме вводят представление о так называемом электронном облаке, которое можно интерпретировать в данном случае как условный образ электрона. Форма и эффективные размеры электронного облака зависят от квантовых чисел n, l, m и, следовательно, меняются от одного состояния электрона в атоме к другому.

Чтобы описать размеры и форму электронного облака, вводят некоторую функцию unlm (r, θ, φ) = vnl (r) Zlm (θ, φ) , γδе r, θ, φ – ρτерические координаты электрона. Функцию unlm интерпретируют следующим образом: unlm (r, θ, φ) dV ερть вероятность обнаружить в элементе объема dV вблизи точки (r, θ, φ) ύλектрон, находящийся в состоянии с квантовыми числами n, l, m. Иначе говоря, unlm (r, θ, φ) θμеет смысл соответствующей плотности вероятности обнаружения электрона. Напомним, что dV = r2drdΩ, γδе dΩ = sin θdθdφ – ύλемент телесного угла. Функция wnl (r) dr = vnl (r) r2 dr есть, таким образом, вероятность обнаружить электрон с квантовыми числами n, l на расстояниях от ядра, попадающих в интервал значений от r до r + dr.

При l=0 (так называемый s-электрон) имеем сферическое электронное облако. При l=1 (р-электрон) имеем электронное облако либо в виде своеобразного веретена, либо в виде тороида, что зависит от квантового числа m. Итак, чтобы представить себе электрон в атоме, можно пользоваться в качестве условных образов моделями шара, веретена, тороида и т.д.

основное состояние атома водорода характеризуется сферическим электронным облаком. Теория показывает, что в этом случае wnl (r) = 4 r2 / r13 exp (- 2r / r1) .

Характеризующий эффективный радиус облака параметр r1 определяется соотношением r1 = h2 / me2 ; в теории Бора он выступал как радиус пе5рвой орбиты.

В заключение заметим, что при квантовых переходах в атоме происходит не только изменение энергии, но и также “перестройка” электронных облаков – изменение их размеров и формы.

Микрообъект и окружающий его мир. Как уже отмечалось, одно из наиболее специфических свойств микрообъекта есть наличие в его поведении элементов случайности, вследствие чего квантовая механика оказывается принципиально статистической теорией, оперирующей с вероятностями. Однако в чем же заключается причина наличия элементов случайности в поведении микрообъекта?

Ответ на поставленный вопрос таков: случайность в микроявлениях объясняется, образно говоря, тем, что микрообъект взаимодействует со всем окружающим его миром. Специфика квантовой механики такова, что ни один объект в ней не может, строго говоря, считаться полностью изолированным, полностью независимым от окружения. Как отмечал Мякишев, “причина статистического характера квантовой механики та же, что и в классической статистической механике, – наличие большого числа связей, влияющих на движение объекта. Частица, рассматриваемая в квантовой механике как свободная, в действительности свободна только от воздействий динамического характера. Но она находится под действием случайных сил, вызывающих квантовые флуктуации ее поведения, отражаемые соотношением неопределенностей.” Какова природа случайных воздействий на микрообъект? В квантовой теории поля она проявляется в явном виде – как взаимодействие микрообъекта с вакуумом (вакуум не есть пустота, он “заполнен” виртуальными зарядами) . Можно сказать, что микрообъект взаимодействует с окружающим его миром через виртуальные микрообъекты.

В этом свете представляется совершенно естественной отмечавшаяся выше интерпретация корпускулярно-волнового дуализма как потенциальной способности микрообъекта проявлять те или иные свои свойства в зависимости от внешних условий, т.е. в зависимости от окружающей микрообъект обстановки. Это подразумевает органическую связь микрообъекта с окружающим его миром – ведь сама сущность микрообъекта реализуется в том или ином виде в зависимости от конкретных условий, конкретной обстановки.

Обнаруживаемая квантовой механикой невозможность безграничной детализации объектов и явлений в конечном счете так же должна быть объяснена взаимодействием микрообъекта с окружающим миром. Это означает, что на определенной стадии исследования физические объекты уже нельзя рассматривать изолировано. Как уже говорилось ранее, “во время взаимодействия электрона с фотонами нет, строго говоря, ни электрона, ни фотонов, а есть нечто целое, которое и следует рассматривать как единое целое – без уточнения деталей” .

Квантовая механика восстанавливает диктуемую жизненным опытом идею единства мира и всеобщей связи явлений, которая была в значительной мере ущерблена в классической физике. Стираются существовавшие ранее резкие различия между волнами и корпускулами, между частицами и полями, между объектами наблюдения и средой; на первый план выдвигаются взаимопревращения материи. Следует согласится со следующим весьма точным замечанием Бома: “По-видимому, необходимо отказаться от представления, что Вселенную можно фактически разбить на отдельные части, и заменить это представлением о всем мире как едином целом. Повсюду, где квантовые явления играют существенную роль, мы найдем, что отдельные “части” Вселенной могут существенно изменяться с течением времени вследствие неизбежных и неразделимых связей, существующих между ними. Таким образом, мы приходим к картине Вселенной как неделимого, но гибкого и постоянно изменяющегося целого” .

Список литературы

Эткинс П. Кванты: Справочник концепций. – М.: Мир, 1977. – 496 с.

Гарднер М. Теория относительности для миллионов. – М.: Атомиздат, 1967. – 189 с.

Тарасов Л. В. Основы квантовой механики: Учебное пособие для вузов. —М.: Высш. школа, 1978. – 287 с.

Елютин П. В., Кривченков В. Д. Квантовая механика. – М.: Наука, 1976. – 334 с.

Липкин Г. Квантовая механика. – М.: Мир, 1977. – 592 с.

Блохинцев Д. И. Основы квантовой механики. – М.: Наука, 1976. – 664 с.