Смекни!
smekni.com

Історія математики Греції (стр. 2 из 5)

Математики різних епох, включаючи нашу, показали, який зв'язок існує між цими грецькими проблемами і сучасною теорією рівнянь, зв'язок, що торкається питання про області раціональності, алгебраїчні числа і теорію груп.

Ймовірно, від групи софістів, що до деякої міри були зв'язані з демократичним рухом, відмежувалася інша група філософів з математичними інтересами, що примикав до аристократичних об'єднань. Вони називали себе піфагорійцями на честь засновника цієї школи Піфагора, що, приблизно, був містиком, ученим і державним діячем аристократичної користі. Софісти в більшості підкреслювали реальність змін, піфагорійці прагнули знайти в природі і суспільстві незмінне. У пошуках вічних законів світу вони вивчали геометрію, арифметику, астрономію і музику. Найвидатнішим їхнім представником був Архіт з Тарента, що жив близько 400 р. до н.е. і школі якого, якщо ми приймемо гіпотезу Франка (Е. Frank), варто приписати велику частину "піфагорійської" математики. Арифметика піфагорійців була найвищою мірою спекулятивною наукою і мала мало загального із сучасної їй обчислювальною технікою Вавилона. Числа розбивалися на класи: парні, непарні, непарно-парні, непарно-непарні, прості і складені, зроблені, дружні, трикутні, квадратні, п’ятикутні і т, д. Деякі з найбільш цікавих результатів отримані для "трикутних чисел", що зв'язують арифметику і геометрію:

термін „квадратні числа” пішов від побудов піфагорійців:

Самі фігури значно старше, адже деякі з них ми знаходимо в неолітичній кераміці. Піфагорійці ж досліджували їхньої властивості, внесли сюди наліт свого числового містицизму і зробили числа основою своєї філософії всесвіт, намагаючись звести всі співвідношення до числового ("усі є число"). Крапка була "поміщеною одиницею".

Піфагорійцям були відомі деякі властивості правильних багатокутників і правильних багатогранників.

Вони показали, як заповнити площину системою правильних трикутників, чи квадратів, чи правильних шестикутників, а простір - системою кубів. Згодом Арістотель намагався доповнити це невірним твердженням, що простір можна заповнити правильними тетраедрами). Можливо, що піфагорійці знали правильний октаедр і додекаедр - останню фігуру тому, що кристали піриту, що знаходяться в Італії, мають форму додекаедра, а зображення таких фігур у орнаментах як магічний символ відноситься ще до часів етрусків. Вони належать до кельтських племен Центральної Європи початку епохи залізного віку ( 900 р. до н.е. ) і пізніше (пірит був джерелом заліза).

Що стосується теореми Піфагора, піфагорійці приписували її своєму наставнику і передавали, що він приніс у жертву богам сто биків на подяку. Ми вже бачили, що ця теорема була відома у Вавилоні часів Хаммураппі, але дуже можливо, що перший загальний доказ був отриманий у школі піфагорійців.

Найбільш важливим серед приписуваних піфагорійцям відкриттів було відкриття ірраціонального у виді непорівнянних відрізків прямої лінії. Можливо, що воно було зроблено в зв'язку з дослідженням геометричного середнього a:b = b:c, величиною, що цікавила піфагорійців і служила символом аристократії. Чому дорівнює геометричне середнє одиниці і двійки, двох священних символів? Це вело до вивчення відносини сторін і діагоналі квадрата, і було виявлено, що таке відношення не виражається "числом", тобто тим, що ми тепер називаємо раціональним числом (цілим чи числом дробом), а тільки такі числа допускалися піфагорійською арифметикою.

Припустимо, що це відношення дорівнює р : q, де цілі числа р и q ми завжди можемо вважати взаємно простими. Тоді р2 = 2q отже, р2, а з ним і р - парне число, і нехай р = 2r. Тоді q повинно бути непарним, але, тому що q2 = 2r2, воно повинно бути також парним. Таке протиріччя дозволялося не розширенням поняття числа, як на чи Сході в Європі епохи Відродження, а тим, що теорія чисел для таких випадків відкидалася, синтез же шукали в геометрії.

Це відкриття, що порушило невимушену гармонію арифметики і геометрії, імовірно, було зроблено в останні десятиліття п'ятого сторіччя до н.е.. Поверх того, виявилися інші труднощі - виявилася в розуміннях про реальність змін, і цим філософи займаються до наших днів. Відкриття цих нових труднощів приписують Зенонові Элейському (близько 450 р. до н.е. ), учню Парменіда, філософа-консерватора, що учив, що розум осягає тільки абсолютне буття і що зміна є тільки удаване. Це придбало математичне значення тоді, коли в зв'язку з такими задачами, як визначення обсягу піраміди, сталі займатися нескінченними процесами. Тут парадокси Зенона виявилися в протиріччі з деякими давніми й інтуїтивними представленнями відносно нескінченно малого і нескінченно великого. Завжди вважали, що суму нескінченно багатьох величин можна зробити як завгодно великий, навіть якщо кожна величина вкрай мала, а також що сума кінцевого чи нескінченного числа величин розміру нуль дорівнює нулю. Критика Зенона була спрямована проти таких представлень, і його чотири парадокси викликали таке хвилювання, що і зараз можна спостерігати деякі брижі. Ці парадокси дійшли до нас завдяки Аристотелю і відомі під назвами Ахіллес, Стріла, Дихотомія (розподіл на два) і Стадіони. Вони сформульовані так, щоб підкреслити протиріччя в поняттях руху і часу, але це зовсім не спроба дозволити такі протиріччя.

Парадокси Ахіллес і Дихотомія, що ми викладемо своїми словами, роз'яснять нам суть цих міркувань.

Ахіллес. Ахіллес і черепаха рухаються в одному напрямку по прямій. Ахіллес куди швидше черепахи, але, щоб її нагнати, йому треба спочатку пройти точку Р, з якої черепаха почала рух. Коли Ахіллес потрапить у Р, черепаха просунеться в точку Р1. Ахіллес не може наздогнати черепаху, поки не потрапить у P1 але черепаха при цьому просунеться в нову точку Р2. Якщо Ахіллес знаходиться в Р2, черепаха виявляється в новій точці Р3 і т.д. Отже, Ахіллес ніколи не може наздогнати черепаху.

Дихотомія. Допустимо, що я хочу пройти від А до В по прямій. Щоб досягти В, мені треба спочатку пройти половину (АВ1) відстані АВ; щоб досягти В2, я повинний спочатку досягти В2 на півдороги від А до В1 і так до нескінченності, так що рух ніколи не зможе початися.

Аргументи Зенона показали, що кінцевий відрізок можна розбити на нескінченне число малих відрізків, кожний з який - кінцевої довжини. Вони показали також, що ми натрапляємо на труднощі при поясненні того, який зміст заяви, що пряма "складається" із крапок. Дуже імовірно, що сам Зенон не мав представлення про те, до яких математичних висновків приводять його міркування. Проблеми, що привели до парадоксів Зенона, незмінно виникають у ході філософських і теологічних дискусій. Ми в них бачимо проблеми, зв'язані з відношенням, потенційної й актуальної нескінченності. Утім, Поль Таннері вважав, що міркування Зенона насамперед були спрямовані проти піфагорійского представлення простору як суми крапок ("крапка є одиниця положення"). Як би справа ні обстояла, безсумнівно, що міркування Зенона впливали на математичну думку багатьох поколінь. Його парадокси можна зіставити з млой, якими користався в 1734 р. єпископ Берклі, показуючи, до яких логічних безглуздостей може привести погане формулювання положень математичного аналізу, але не пропонуючи зі своєї сторони кращого обґрунтування.

Після відкриття ірраціонального розуміння Зенона стали навіть ще більше турбувати математиків. Чи можлива математика як точна наука? Таннері думав, що ми можемо говорити про "дійсний логічний скандал" - про кризу грецької математики. Якщо справа обстояла саме так, то ця криза починається під кінець Пелопонесської війни, що закінчилася падінням Афін (404 р. до н, е.). Тоді ми можемо знайти зв'язок між кризою в математику і кризою суспільної системи, тому що падіння Афін означало смертний вирок пануванню рабовласницької демократії і початок нового періоду верховенства аристократії - криза, що була дозволена вже в дусі нової епохи.

Для цього нового періоду грецької історії характерно те, що росте багатство визначеної частини правлячих класів і так само ростуть убогість і незабезпеченість бідняків. Правлячі класи усе більше засобів для існування одержували за рахунок рабської праці. Це давало їм дозвілля для занять мистецтвом і наукою, але заодно усе більш підсилювало їхню неприхильність до фізичної праці. Ці дозвільні добродії з презирством відносилися до праці рабів і ремісників, і. заспокоєння від турбот вони шукали в заняттях філософією й етикою індивідуума. На таких позиціях коштували Платон і Аристотель. У "Республіці" Платона (написаної, імовірно, близько 360 р. до н.е. ) ми знаходимо саме чітке вираження ідеалів рабовласницької аристократії. "стражі" у республіці Платона повинні вивчати "квадривіум", що складається з арифметики, геометрії, астрономії і музики, для того щоб розуміти закони всесвіту.

Така інтелектуальна атмосфера (принаймні , у своєму ранньому періоді) була сприятлива для обговорення основ математики і для умоглядної космогонії. Частина сторінки з першого видання "Початків" Евкліда, 1482 р.

Щонайменше три великих математики цього періоду були зв'язані з Академією Платона, а саме Архіт, Теєтет (розум. у 369 р.) і Євдокс (ок.408-355). Теєтету приписують ту теорію ірраціональних, котра викладена в десятій книзі "Початків" Евкліда. Ім'я Евдокса зв'язане з теорією відносин, що Евклід дає у своїй п'ятій книзі, а також з так званим методом вичерпування, що дозволив строго проводити обчислення площ і обсягів. Це означає, що саме Євдокс переборов "кризу" у грецькій математиці і що його строгі формулювання допомогли визначити напрямок розвитку грецької аксіоматики і, значною мірою , усієї грецької математики.