Смекни!
smekni.com

Решение параболических уравнений (стр. 4 из 4)

где

В граничных узлах

(1.33)

В начальный момент

. (1.34)

Эта разностная схема устойчива при любом

. Будем решать систему уравнений (1.32), (1.33) и (1.34) методом прогонки. Для этого ищем значения функции в узле
в виде

, (1.35)

где

– пока неизвестные коэффициенты.

Аналогично


. (1.36)

Подставив значение (1.35) в (1.32) получим:

.

Откуда

. (1.37)

Из сравнения (1.35) и (1.37) видно, что

. (1.38)

. (1.39)

Для

из (1.32) имеем:

.

Откуда

или


.

Откуда, используя (1.35), получим:

, (1.40)

. (1.41)

Используя данный метод, мы все вычисления проведем в следующем порядке для всех

.

1) Зная значения функции

на границе (1.33), найдем значения коэффициентов
по (1.40) и
по (1.38) для всех
.

2) Найдем

по (1.41), используя для
начальное условие (1.34).

3) Найдем

по формулам (1.39) для
.

4) Найдем значения искомой функции на

слое, начиная с
:

2.2 Описание логики программного модуля

Листинг программы приведен в приложении 1. Ниже будут описаны функции программного модуля и их назначение.

Функция main() является базовой. Она реализует алгоритм метода сеток, описанного в предыдущих разделах работы.

Функция f (x, y) представляет собой свободную функцию двух переменных дифференциального уравнения (1.29). В качестве аргумента в нее передаются два вещественных числа с плавающей точкой типа float. На выходе функция возвращает значение функции

, вычисленное в точке
.

Функции mu_1 (t) и mu_2 (t) представляют собой краевые условия. В них передается по одному аргументу (t) вещественного типа (float).

Функция phi() является ответственной за начальный условия.

В функции main() определены следующие константы:

– правая граница по
для области
;

– правая граница по
для области
;

– шаг сетки по оси
;

– шаг сетки по оси
;

Варьируя

и
можно изменять точность полученного решения
от менее точного к более точному. Выше было доказано, что используемая вычислительная схема устойчива для любых комбинаций параметров
и
, поэтому при устремлении их к нуля можем получить сколь угодно близкое к точному решение.

Программа снабжена тремя механизмами вывода результатов работы: на экран в виде таблицы, в текстовый файл, а также в файл списка математического пакета WaterlooMaple. Это позволяет наглядно представить полученное решение.

Программа написана на языке программирования высокого уровня Borland C++ 3.1 в виде приложения MS-DOS. Обеспечивается полная совместимость программы со всеми широко известными операционными системами корпорации Майкрософт: MS-DOS 5.x, 6.xx, 7.xx, 8.xx, Windows 9x/Me/2000/NT/XP.

2.3 Пример работы программы

В качестве примера рассмотрим численное решение следующего дифференциального уравнения параболического типа:

в области

,

удовлетворяющее условиям

Задав прямоугольную сетку с шагом оси

0.1 и по оси
0.01, получим следующее решение:

2.10 1.91 1.76 1.63 1.53 1.44 1.37 1.31 1.26 1.22 1.18

2.11 1.75 1.23 1.20 1.15 1.10 1.07 1.04 1.04 1.07 1.21

2.12 1.61 0.95 0.96 0.93 0.91 0.90 0.90 0.94 1.03 1.24

2.13 1.51 0.79 0.81 0.81 0.80 0.81 0.83 0.89 1.03 1.27

2.14 1.45 0.69 0.73 0.74 0.74 0.76 0.80 0.88 1.04 1.31

2.15 1.41 0.64 0.69 0.70 0.71 0.74 0.79 0.89 1.05 1.34

В таблице ось x расположена горизонтально, а ось t расположена вертикально и направлена вниз.

На выполнение программы на среднестатистическом персональном компьютере тратится время, равное нескольким миллисекундам, что говорит о высокой скорости алгоритма.

Подробно выходной файл output.txt, содержащий таблицу значений функции

представлен в приложении 3.

Заключение

В работе был рассмотрен метод сеток решения параболических уравнений в частных производных. Раскрыты основные понятия метода, аппроксимация уравнения и граничных условий, исследована разрешимость и сходимость получаемой системы разностных уравнений.

На основании изученного теоретического материала была разработана программная реализация метода сеток, проанализирована ее сходимость и быстродействие, проведен тестовый расчет, построен графики полученного численного решения.

Список источников

1. Березин И.С., Жидков Н.П.Методы вычислений. Т.2. – М.: Физматгиз, 1962.

2. Тихонов А.Н., Самарский А.А.Уравнения математической физики. – М.: Наука, 1972.

3. Пирумов У.Г.Численные методы. – М.: Издательство МАИ, 1998.

4. Калиткин Н.Н.Численные методы. – М.: Наука, 1976.

Приложение

Текст программы

// – //

#include <stdio.h>

#include <conio.h>

#include <math.h>

void main(void);

float f (float x, float t);

float mu_1 (float t);

float mu_2 (float t);

float phi (float x);

// – //

void main(void)

{

clrscr();

FILE *myfile;

FILE *plotter;

float a[120] [120];

float b[120] [120];

float u[120] [120];

float T = 0.05;

float l = 1;

float h = 0.1;

float tau = 0.01;

int n, i, j, k;

float s = pow (h, 2) / tau;

n = ceil (l / h);

for (i = 0; i <= 119; i++)

{

for (j = 1; j <= 119; j++)

{

u[i] [j] = 0;

a[i] [j] = 0;

b[i] [j] = 0;

}

}

for (i = 0; i <= n; i++)

{

u[i] [0] = phi (i * h);

}

for (j = 0; j <= floor (T /tau); j++)

{

u[0] [j] = mu_1 (tau * j);

u[n] [j] = mu_2 (tau * j);

}

for (j = 0; j <= floor (T / tau); j++)

{

a[1] [j + 1] = 1 / (2 + s);

for (i = 2; i <= n – 1; i++)

{

a[i] [j + 1] = 1 / (2 + s – a [i – 1] [j + 1]);

}

b[1] [j + 1] = mu_1 ((j + 1) * tau) + s * u[1] [j] + pow (h, 2) * f (h, (j + 1) * tau);

for (i = 2; i <= n – 1; i++)

{

b[i] [j + 1] = a [i – 1] [j + 1] + s * u[i] [j] + pow (h, 2) * f (i * h, (j + 1) * tau);

}

u[n] [j + 1] = mu_2 ((j + 1) * tau);

for (k = 1; k <= n – 1; k++)

{

u [n – k] [j + 1] = a [n – k] [j + 1] * (b [n – k] [j + 1] + u [n – k + 1] [j + 1]);

}

}

myfile = fopen («output.txt», «w+»);

plotter = fopen («3dplot.txt», «w+»);

fprintf (myfile, «Таблицазначенийфункции u=u (x, t) вобласти D={0<=X<=%g, 0<=T<=%g}:&bsol;n», l, T);

printf («Значения функции u (x, t) в области D={0<=X<=%g, 0<=T<=%g}:&bsol;n&bsol;n», l, T);

for (j = 0; j <= floor (T / tau); j++)

{

for (i = 0; i <= n; i++)

{

printf («%.2f», u[i] [j]);

fprintf (myfile, «u(%g) (%g)=%g;&bsol;n», i * h, j * tau, u[i] [j]);

if (i < n && j < floor (T / tau))

{

fprintf (plotter, «[[%g, %g, %g], [%g, %g, %g], [%g, %g, %g], [%g, %g, %g]]», i * h, j * tau, u[i] [j], (i + 1) * h, j * tau, u [i + 1] [j], i * h, (j + 1) * tau, u[i] [j + 1], (i + 1) * h, (j + 1) * tau, u [i + 1] [j + 1]);

if (i >= n – 1 && j >= floor (T / tau) – 1)

{

}

else

{

fprintf (plotter,»,»);

}

}

}

printf («&bsol;n»);

}

fclose(myfile);

fclose(plotter);

printf («&bsol;nОсь x расположена горизонтально; ось t расположена вертикально и направлена вниз»);

printf («Шаг по оси x равен % g; шаг по оси t равен % g.&bsol;n», h, tau);

printf («&bsol;nДля выхода нажмите ENTER…»);

while (getch()!= 13);

}

// – //

float f (float x, float t)

{

return x * t;

}

// – //

float mu_1 (float t)

{

return 2.1 + t;

}

// – //

float mu_2 (float t)

{

return 3.2 * (t + 1 / 2.71828);

}

// – //

float phi (float x)

{

return (1.1 * pow (x, 2) + 2.1) * exp(-x);

}