Смекни!
smekni.com

Теория вероятности (стр. 2 из 3)

Решение. Пусть «счастливые» билеты имеют номера 1,2,3,4,5. Обозначим через i1 номер билета, взятого первым студентом, через i2 - номер билета, взятого вторым студентом, тогда элементарным исходом будет пара

, а пространство элементарных исходов

здесь все элементарные исходы равновероятны. Событие А={первый студент взял «счастливый» билет} имеет вид

а событие В={второй студент взял «счастливый» билет} имеет вид:

Каждое из событий А и В содержит

элементов, а все пространство W содержит
элементов. Следовательно, Р(А)=Р(В)=1/5.

2. Вероятность и информация

Рассмотрим n-мерное вещественное пространство

. Пусть в какую-то ограниченную область
наудачу бросили точку. Слово «наудачу» означает, что в таком эксперименте все точки области
«равновозможны». В этом случае вероятность попадания этой точки в какую-то подобласть
определяется формулой

где

и
– n-мерные объемы областей
и
соответственно. Здесь элементарными исходами называются точки множества
(которое играет роль пространства элементарных исходов), а благоприятствующими исходами – точки множества
.

Задача 6.Точку наудачу бросили на отрезок

. Какова вероятность попадания этой точки на интервал
?

Решение. Здесь пространство элементарных исходов весь отрезок

, а множество благоприятствующих исходов
, при этом длины этих интервалов равны
и
.
Поэтому вероятность попадания брошенной точки в указанный интервал равна
.

Задача 7.На отрезок

бросили наудачу и поочередно две точки. Какова вероятность, что первая точка лежит правее второй точки?

Решение. Обозначим получившиеся координаты точек через x и y. Элементарным исходом в таком бросании двух точек будет пара

, а пространством элементарных исходов – квадрат
. Событие A={первая точка лежит правее второй точки} равносильно условию x>y, следовательно,

, т.е. представляет собой треугольник (см. рисунок). Площади квадрата и треугольника равны соответственно
и
, а потому вероятность
.

3. Аксиомы теории вероятности

Суммой двух событий А и В называется событие АÈВ (А+В), заключающееся в том, что произойдет хотя бы одно из событий А или В (либо событие А, либо событие В либо А и В одновременно).

Произведением (или пересечением)двух событий А и В называется событие АÇВ (АВ), состоящее в одновременном появлении и события А и события В.

Вероятность суммы двух событий вычисляется по формуле (теорема сложения)

.

События А12,...,Ак образуют полную группу событий, если в результате испытания непременно произойдет одно из них , т.е.

.

События А и В называются несовместными (непересекающимися), если они не могут произойти одновременно АÇВ=Æ. Если события несовместны, то

Р(АВ) = 0 и Р(А + В) = Р(А) + Р(В).

Задача 1. В ящике 10 красных и 5 синих пуговиц. Вынимаются наудачу две пуговицы. Какова вероятность, что пуговицы будут одноцветными?

Решение. Событие A={вынуты пуговицы одного цвета} можно представить в виде суммы

, где события
и
означают выборку пуговиц красного и синего цвета соответственно. Вероятность вытащить две красные пуговицы равна
, а вероятность вытащить две синие пуговицы
. Так как события
и
не могут произойти одновременно, то в силу теоремы сложения

Помимо обычной (безусловной) вероятности можно рассматривать так называемую условную вероятность, вычисляемую при условии, что событие B произошло. Такую вероятность (вероятность А при условии В) обозначают Р(А|В) и вычисляют с помощью одной из двух формул:

Из этой формулы вытекает формула для вероятности произведения двух событий (теорема умножения)

.

Формула умножения для трех событий:

.

Задача 2.В семье – двое детей. Какова вероятность, что старший ребенок – мальчик, если известно, что в семье есть дети обоего пола?

Решение. Пусть А={старший ребенок – мальчик}, B={в семье есть дети обоего пола}. Будем считать, что рождения мальчика и рождение девочки – равновероятные события. Если рождение мальчика обозначить буквой М, а рождение девочки – Д, то пространство всех элементарных исходов состоит из четырех пар:

. В этом пространстве лишь два исхода (МД и ДМ) отвечают событию B. Событие AB означает, что в семье есть дети обоего пола и старший ребенок – мальчик, это значит, что второй (младший) ребенок – девочка. Этому событию AB отвечает один исход – МД. Таким образом, |AB|=1, |B|=2 и

Задача 3. Мастер, имея 10 деталей, из которых 3 – нестандартных, берет и проверяет детали одну за другой, пока нему не попадется стандартная. Какова вероятность, что он проверит ровно две детали.

Решение. Событие А={мастер проверил ровно две детали} означает, что при такой проверке первая деталь оказалась нестандартной, а вторая – стандартная. Значит,

, где
={ первая деталь оказалась нестандартной } и
={вторая деталь – стандартная}. Очевидно, что вероятность
кроме того,
(так как перед взятием второй детали у мастера осталось 9 деталей, из которых только 2 нестандартные и 7 стандартных). По теореме умножения

Событие А не зависит от В, если появление события В не меняет значения вероятности события А, т.е. условная вероятность равна безусловной: Р(А/В) = Р(А). Аналогично определяется независимость события B от A.Оказывается, что свойство независимости на самом деле симметрично относительно событий A и B, и потому определение независимости двух событий принимает более простой вид:

два события A и Bнезависимы, если справедливо равенство