Смекни!
smekni.com

Теория вероятности (стр. 3 из 3)

Р(АВ) = Р(А) × Р(В).

Это равенство можно использовать также как удобный критерий независимости при практической проверке независимости двух событий.

Задача 4.В одном ящике 3 белых и 5 черных шаров, в другом ящике – 6 белых и 4 черных шара. Найти вероятность того, что хотя бы из одного ящика будет вынут один белый шар, если из каждого ящика вынуто по одному шару.

Решение. Событие A={хотя бы из одного ящика вынут белый шар} можно представить в виде суммы

, где события
и
означают выборку одного белого шара из первого и второго ящика соответственно. Вероятность вытащить белый шар из первого ящика равна
, а вероятность вытащить белый шар из второго ящика
. Кроме того, в силу независимости
и
имеем:
. По теореме сложения получаем:

.

Пусть событие А может быть реализовано только при условии появления одного из событий Hi, i = 1,..., n. Предположим, что события Hi несовместны, образуют полную группу (т.е. в результате испытания непременно произойдет одно из них) и вероятности их до опыта известны.. Такие события Hiназываются гипотезами. Тогда вероятность события А можно вычислить с помощью формулы полной вероятности:

.

Задача 5. Три экзаменатора принимают экзамен по некоторому предмету у группы в 30 человек, причем первый опрашивает 6 студентов, второй — 3 студента, а третий — 21 студентов (выбор студентов производится случайным образом из списка). Отношение трех экзаменаторов к слабо подготовившимся различное: шансы таких студентов сдать экзамен у первого преподавателя равны 40%, у второго — только 10%, зато у третьего — 70%. Найти вероятность того, что слабо подготовившийся студент сдаст экзамен.

Решение. Обозначим через

– гипотезы, состоящие в том, что слабо подготовившийся студент отвечал первому, второму и третьему экзаменатору соответственно. По условию задачи

,
,
.

Пусть событие A={слабо подготовившийся студент сдал экзамен}. Тогда снова в силу условия задачи

,
,
.

Заключение

В заключении подведем основные итоги работы.

Итак, в работе были рассмотрены вероятность как событие, классическая вероятностная модель, аксиомы теории вероятности.

Опыт, эксперимент, наблюдение явления называются испытанием. Испытаниями, например, являются: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесенным на каждую грань числом очков — от одного до шести).

Результат (исход) испытания называется событием. Событиями являются: выпадение герба или выпадение цифры, попадание в цель или промах, появление того или иного числа очков на брошенной игральной кости.

Можно ли как-то измерить возможность появления некоторого случайного события? Другими словами, можно ли охарактеризовать эту возможность некоторым числом?

Всякое испытание влечет за собой некоторую совокупность исходов — результатов испытания, т. е. событий. Во многих случаях возможно перечислить все события, которые могут быть исходами данного испытания.

Определение 1. Говорят, что совокупность событий образует полную группу событий для данного испытания, если его результатом обязательно становится хотя бы одно из них.

Определение 2. События U1, U2, ..., U, образующие полную группу попарно несовместимых и равновозможных событий, будем называть элементарными событиями.

Определение 3. Событие А называется благоприятствующим событию Б, если наступление события А влечет за собой наступление события В.

Определение 4 (классическое определение вероятности). Вероятностью Р(А) события А называется отношение m/n числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т. е. Р(А) = m/n.

Из приведенного классического определения вероятности вытекают следующие ее свойства.

1. Вероятность достоверного события равна единице.

Действительно, достоверному событию должны благоприятствовать все n элементарных событий, т.е. m = n, и, следовательно,

2. Вероятность невозможного события равна нулю. В самом деле, невозможному событию не может благоприятствовать ни одно из элементарных событий, т.е. m = 0, откуда

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Список литературы

1. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1965.

2. Боровков А.А. Математическая статистика. М.: Наука, 1984.

3. Коршунов Д.А., Чернова Н.И. Сборник задач и упражнений по математической статистике. Новосибирск: Изд-во Института математики им. С.Л.Соболева СО РАН, 2001.

4. Феллер В. Введение в теорию вероятностей и ее приложения. М.: Мир, Т.2, 1984.