Смекни!
smekni.com

Динамические системы в плоской области (стр. 9 из 13)

б) во всех точках кривой (36) тождественно выполняется равенство

(х, у) Р(х, y) +
(x, y)Q(x, y)=0.(37)

Тогда соотношение (36) называется интегралом или частным интегралом уравнения (III) или системы (I), а кривая, определяемая этим соотношением, интегральной кривой уравнения (III) или системы (I).

Пусть F (х, у) = 0 — интеграл системы (I). Рассмотрим соответствующую интегральную кривую. Эта кривая может иметь в числе своих точек состояния равновесия системы (I), а также точки, в которых одновременно F'x (х, у) = F'y (х, у) = 0, т. е. особые точки кривой (36).

Покажем, что всякий “кусок” интегральной кривой, не содержащий состояний равновесия системы (I) и не имеющий особых точек, является траекторией системы (I) или представляет часть такой траектории.

В самом деле, рассмотрим произвольную точку М00, ус) такого куска кривой (36). Предположим, что в этой точке

F'y (x0, у0)

0

Тогда в некоторой окрестности точки М0 кривая может быть задана уравнением вида y = f(x), причём

для всех точек кривой в этой окрестности. Так как F'y0, у0)

0, то в окрестности точки М0 , F'y (x, у) также отлична от нуля. Из соотношения (37)

F'x(x, y)P(x, y) + F'y(x, y)Q(x,y)=0

следует, что Р (х, у)

0 в окрестности точки М0 и что

Но это значит, что функция y = f(x) удовлетворяет уравнению (II)

Аналогично рассматривается случай, когда F'x (x0, у0)

0. Таким образом, рассматриваемый кусок кривой (36) является куском интегральной кривой в смысле п. 11, т. е. представляет траекторию или часть траектории системы (I).

Рассмотрим теперь семейство кривых

F{x% у, С) = 0,(38)

определенное для значений С в некоторой области (обычно в некотором интервале).Соотношение (38) называется общим интегралом уравнения (III) или системы (1), если каждая кривая семейства (38) является интегральной кривой в определенном выше смысле и если каждая точка области G принадлежит по крайней мере одной из кривых (38).

Из этого определения следует, в частности, что если некоторая функция Ф (х, у) определена в области Gи является аналитической во всех точках этой области, за исключением, быть может, состояний равновесия системы (I), и удовлетворяет в области тождеству

Ф'х(х, у)

Р(х, у) + Ф'y (х, y)
Q(x, y)
0, то соотношение

Ф(x, y) = С(39)

является общим интегралом системы (I).

Если у системы (I) (или уравнения (III) существует общий интеграл вида (39), причем Ф (x, у) есть функция, аналитическая во всех точках области G, то, говорят, что система (I) (или уравнение (III)) имеет в области G аналитический интеграл . В частности, системами вида (I), имеющими аналитический интеграл, являются так называемые гамильтоновы системы, о которых уже говорилось во введении

где Н (x, у) — аналитическая функция. H (х, у) = С является аналитическим интегралом (так называемым «интегралом энергии») этой системы.

Знание аналитического интеграла системы (I) в некоторых частных случаях помогает проводить качественное исследование системы (I).

14. Примеры

Мы приведем здесь ряд простых примеров динамических систем, поясняющих материал, изложенный в предыдущих пунктах.

Во всех указанных примерах динамические системы определены на всей плоскости. Приведем сначала два простейших примера динамических систем без состояний равновесия.

Пример 1.

Траектории — прямые, параллельные оси х

Состояний равновесия, очевидно, нет, все траектории (совпадающие с интегральными кривыми) являются целыми траекториями.

Пример 2.

.

Состояний равновесия нет, траектории не являются «целыми траекториями» ввиду того, что точки па этих траекториях уходят в бесконечность при t, стремящемся к конечному значению. Именно

при t+ c1
(2k+ 1).

Пример 3

(40)

где a1и a2 имеют одинаковые знаки.

На плоскости (х, у) (т. е. на фазовой плоскости системы (40)) эта система задает векторное поле, примерно изображенное на рис. 8, а при a1< 0, а2 < 0 и на рис. 8, б при а1 > 0, а2 > 0. Прямые на этом рисунке являются изоклинами.

Система (40), очевидно, имеет единственное состояние равновесия О (0, 0). Решая систему (40) как линейную с постоянными коэффициентами, легко видеть, что решение, соответствующее начальным значениям t0, x0, у0, имеет вид

(41)

Очевидно, в согласии с леммой 3 это решение является функцией t—t0.

Траектории системы (40) проще всего получить, исключая tв уравнениях (41), т. е. переходя к декартовым координатам. Мы получаем

Полагая при уо

0
, получим «параболы»

(42)

а при у0 = 0 x=0 (43)

Из (42) при С = 0 мы получаем у =0 .

Нетрудно видеть, что если перейти от системы (40) к одному уравнению, например, записанному в виде

или в виде

и проинтегрировать его, то в качестве интегральных кривых в смысле п. 13 мы получим «параболы» (42) и две оси координат.

а) b)

Рис. 8

Отметим здесь же, что, как было указано в п. 13, уравнение (44) задает поле линейных элементов: оно представлено на рис. 9.

Траекториями системы (40) являются те части (половины) парабол (42) и координатных осей х = 0 и у = 0, на которые эти кривые разбиваются состоянием равновесия О (0, 0). Из соотношений (41) видно, что если a1< 0, а2 <Z0, то точка на любой, отличной от О траектории, стремится к состоянию равновесия О при t

, а если a1 > 0, a2 > 0, то при t
. Мы будем сокращенно говорить, что траектория стремится к состоянию равновесия О соответственно при t
или t
.

Рис. 9

Напоминаем, что когда «изображающая» точка, двигаясь по отличной от состояния равновесия траектории, стремится к некоторому состоянию равновесия А (х0, у0), то при этом |t|

. Действительно, как это уже указывалось в п. 6, если бы tстремилось к конечному значению
, то это означало бы, что через точку пространства (х, у, t) с координатами
, х0, у0 проходят две интегральные кривые: одна — прямая, параллельная оси t, соответствующая состоянию равновесия А (х0, у0), и другая, соответствующая траектории L. Это, очевидно, противоречит теореме о существовании и единственности решения.

Таким образом, разбиение на траектории, определенное системой (40) (с указанными на траекториях направлениями *)[ Если особых линий нет, то для того, чтобы наметить направление на траекториях, достаточно наметить направление в какой-либо одной точке, тогда во всех других точках направление определяется из соображений непрерывности. Определить же направление в какой-либо точке х0, у0, в которой Р (х0, у0) =/= 0, можно, вычисляя в этой точке Р (х0, у0) и определяя в этой точке знак Р (х0, у0); если Р (х0, у0) >(), то в точке (х0, yQ) dx/dt> 0, а значит, вблизи этой точки при движении по траектории в сторону возрастания txвозрастает, что н определяет направлении на траектории, проходящей через точку (а;0, у0). Совершенно аналогично можно наметить направления на траекториях, рассматривая знак dyidtв точке, в которой Q {х0, у0) М 0. 2)]), имеет вид, указанный на рис. 10. Состояние равновесия такого типа называется узлом,устойчивым в случае a1< 0, a2<0 (рис. 10, а) и неустойчивым в случае a1 >0, a2 >0 (рис.10,б).