регистрация /  вход

Математика как универсальный язык науки (стр. 1 из 3)

Ставропольский государственный университет

Кафедра исторических и философских наук

РЕФЕРАТ

на

тему:

«Математика как универсальный язык науки»

Выполнила: Студентка 1 курса, факультета психологии,

Специальности педагогика и психология, группы А,

Проверила:

Г.Ставрополь 2010г.

Содержание.

1. Введение

2. Математизация наук

3. Математика в естествознании

4. Литература

1.Введение

Вначале вспомогательное средство расчета, математика превратилась в абсолютно необходимого помощника всех крупнейших исследований нашего времени. Более того, оказалось, что на определенных этапах развития знаний математика является единственным средством познания и, подобно скальпелю хирурга, помогает проникать во внутренние свойства изучаемых объектов.

Известный российский математик Б.В.Гнеденко пишет: “В наше время математизация знаний совершает своеобразный победный марш. Многие области науки и практики, до самого последнего времени находившиеся вдали от использования математических средств исследования, теперь усиленно стремятся наверстать упущенное. Причина этого, конечно, заключается не в преходящей моде, а в том, что чисто качественное исследование явлений природы, экономики, врачебного дела, организации производства, как правило, оказывается недостаточным.”

Математика развивается. Она развивается, как пишет А.Тарский, во всех трех направлениях. Она растет в вышину, т.к. на почве старых, насчитывающих века и тысячелетия теорий возникают новые проблемы. Она растет в ширину, потому, что проникает в другие науки, захватывая все новые ряды явлений. Наконец, она растет в глубину, поскольку все прочнее утверждаются ее основы, совершенствуются методы и упрочиваются принципы. Но развитие математики неизбежно влечет развитие всех математизированных наук.

Никто не в состоянии дать однозначный ответ на вопрос, упорядочена ли природа, заложен ли в ее основе некий план. Но можно с полной уверенностью заявить, что самый могущественный из созданных человеком инструмент - математика - позволяет нам достичь определенного понимания сложного и разнообразного мира природных явлений.

2. Математизация наук

Леонардо да Винчи, Иммануил Кант, Карл Маркс и другие философы, пытаясь определить, что же такое наука, пришли к выводу, что в любом учении научного ровно столько, сколько в нем математического. Поэтому процесс математизации неизбежен для преобразования любой отрасли знания в науку.

Есть один расхожий афоризм “Математика - это искусство давать одно и то же имя разным вещам”. Специфика математического знания заключается в том, что математики не изучают непосредственно действительность, они изучают ее с помощью абстрактных объектов, которые являются идеальными моделями, образами реальных предметов и явлений. Более того, многие абстрактные объекты возникают в математике, не имея своего реального прообраза; иногда, уже после того, как объект возник и изучен в математике, находится реальный предмет, который может быть его прообразом. Так, Лобачевский изобрел гиперболическую геометрию “на бумаге” и только после его смерти был найден реальный объект - псевдосфера - на котором выполнялись законы геометрии Лобачевского. В тот момент, когда Эйнштейн предложил теорию относительности, геометрия Лобачевского уже была хорошо разработана, что позволило теории относительности развиться очень быстро.

Изучение математиками абстрактных объектов приводит к тому, что два, казалось бы, совершенно разных явления, можно описать одинаковыми математическими моделями. Возникая в одной практической задаче, абстрактный математический объект живет своей жизнью, изучается, приходит время и он становится нужен в совершенно другой своей ипостаси. Абстрактный объект возвращается в практику, но уже хорошо изученный. Нечто подобное произошло в XX веке, когда одной из главных наук-заказчиц прикладной математики стала экономика. Многие результаты в экономике возникли простой переформулировкой естественнонаучных результатов, полученных с помощью математических методов.

Не надо считать, что математизация - это простое применение каких-нибудь расчетов. Философ, исследователь связи математики с другими науками Сухотин исторически выделяет 3 этапа математизации науки:

1. Описательно-количественная обработка материала наук.

2. Математическое моделирование изучаемого объекта (это позволяет заменить исследование методом проб и ошибок целенаправленным изучением, раскрыть прогнозирующие функции математики).

3. Построение математической теории определенного класса (благодаря чему появились дисциплины типа математическая физика, математическая лингвистика, математическая биология и т.д.)

Как мы видим, количественное описание - лишь ранний этап математизации любой науки. Все естественные и некоторые гуманитарные науки вступили уже во второй этап - этап математического моделирования. Существуют адекватные математические модели, описывающие очень большой класс явлений: от процесса распространения слухов до аэродинамических течений, возникающих под крылом самолета в момент отрыва от земли.

В современном мире математизация науки часто проявляется как компьютеризация. Задачи, которые ставят науки перед математикой так и звучат: “Как эффективно на компьютере просчитать такой-то процесс?”, “Как смоделировать на компьютере поведение такого-то объекта?” Это, как и сама математизация, тоже естественный процесс. С появлением ЭВМ у математиков появилась возможность в считанные минуты проводить вычисления, на которые раньше потребовались бы годы. Кроме того, у всех ученых появилась возможность самые нудные и неинтересные (автоматизируемые) этапы познания “сгрузить” на компьютеры, освободив тем самым время для творческой деятельности.

Конечно же, влияние математики на другие отрасли знания сказывается прежде всего в том, что она поставляет аппарат количественной переработки конкретного материала наук. Методы, возникшие в других дисциплинах, нередко выходят за пределы специальной области, но отличие математических методов состоит в том, что они применяются повсеместно, не зная исключений. Это и делает математику особой наукой, обладающей универсальным назначением, даже не наукой, а, как часто говорят, универсальным языком науки.

3.Математика в естествознании

Нельзя не отметить огромную роль, которую математика играет и играла в различных отраслях естествознания. Развитие современного естествознания, особенно, конечно, физики, немыслимо без применения математического аппарата.

Естествознание - комплекс наук о естественном, реальном мире. Говоря о математизации и о роли математики в познании, нельзя не отметить связь между математикой и естественными науками.

Один из первых ключевых моментов влияния математики на развитие естествознания - признание гелиоцентрической системы мира. Сейчас ни у кого не вызывает удивления утверждение о том, что Земля вращается вокруг Солнца, но во времена Коперника (XVI век) общепринятой была геоцентрическая система. Изучая движение небесных тел, Коперник предложил гелиоцентрическую гипотезу, а основным аргументом в ее пользу было то, что при этом возникают “чудесные математические упрощения”. В средние века одним из основополагающих принципов развития любой науки был принцип, сформулированный Уильямом Оккамом в начале XIV века, “бритва Оккама”, который гласил, что “природа довольствуется простотой и не терпит пышного великолепия излишних причин”. Коперник сам не дожил до признания учеными его гипотезы, но основным аргументом в ее пользу и сейчас является заметное упрощение уравнений движения планет.

Гелиоцентрическая теория восторжествовала, как в дальнейшем и многие другие теории, которые либо противоречили нашему чувственному опыту, либо вынуждали нас признавать физические реалии, не воспринимаемые нашими органами чувств. Важную роль в этом сыграла математика, которая начиная с XVII в. заняла ведущее место в физической науке, что привело к значительным увеличению результативности этой науки. Это произошло благодаря двум “гигантам”: Декарту и Галлилею. Они как бы реформировали саму природу научной деятельности. Они критически пересмотрели понятия, которыми должна оперировать наука, по-новому определили цели и задачи научной деятельности и даже изменили саму методологию науки. “Новые цели и новая методология не только придали естествознанию небывалую силу, но и провозгласили нерасторжимый союз с математикой”. Декарт провозгласил четыре правила, которые гарантируют получение точного знания:

1. Не принимать за истинное что бы то ни было, прежде чем не признал это несомненно истинным (т.е. избегать поспешности суждений и предубеждения).

2. Делить каждую из рассматриваемых трудностей на столько частей, на сколько потребуется, чтобы лучше их разрешить.

3. Руководить ходом своих мыслей, начиная с предметов простейших и легко познаваемых, и восходить мало-помалу до познания наиболее сложных.

4. Делать всюду настолько полные перечни и такие общие обзоры, чтобы быть уверенным, что ничего не пропущено.

Декарт сделал вывод о том, что именно математический метод открывает перед человеком путь к постижению законов природы, и обосновал его. Он писал о математике “Это более мощный инструмент познания, чем все остальные, что дала нам человеческая деятельность, ибо он служит источником всего остального”.

Всесилие человеческого разума, неизменность законов природы, учение о протяженности и движении как сущностях физических объектов, различие между качествами, реально присущими объектам, и качествами, лишь кажущимися, а в действительности рожденными реакцией разума на чувственные данные, - все эти идеи, подробно развитые в сочинениях Декарта, оказали влияние на формирование современного мышления.