Смекни!
smekni.com

Некоторые темы геометрии (стр. 2 из 5)

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

Под векторным произведением векторов

и
понимают вектор
, имеющий длину и направленный перпендикулярно к плоскости
,определяемой векторами
и
, причем так, что векторы
,
и
образуют правую тройку векторов (длина вектора
численно равна площади параллелограмма, построенного на векторах
и
как на сторонах (это геометрический смысл векторного произведения).

Векторное произведение обозначают:

или
. Очевидно, что
(из определения векторного произведения).
. Векторное произведение подчиняется только распределительному закону:

.

СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ТРЕХ ВЕКТОРОВ

Смешанным про­из­ве­дением векторов

,
и
назовем чис­ло К, равное объ­е­му па­рал­ле­ле­пи­пе­да, построенного на этих век­то­рах (рис. 10) и вычисляемое как:

Очевидно, что если

,
и
компланарны, то К =
=0.

Из определения смешанного произведения следует интересный факт, что произведение не зависит от порядка следования векторов в смешанном произведении, так как объем параллелепипеда (положительный или отрицательный) зависит только от расположения этих векторов в пространстве (левая или правая тройка) потому, что является псевдоскаляром. Следовательно, можно записать

или
.

Это свойство смешанного произведения служит обоснованием упрощения записи смешанного про­из­ве­дения:

.

ТЕМА 4. Прямая линия на плоскости.

УРАВНЕНИЕ ПРЯМОЙ НА ПЛОСКОСТИ

На плоскости, заметим, могут быть заданы только двухмерные, или плоские преобразования.

Уравнение

, связывающее две переменные x и y называется уравнением линии L в выбранной плоской системе координат, если координаты любой точки этой линии L удовлетворяют уравнению, а любые другие координаты точек, не принадлежащих лини L, не удовлетворяют указанному уравнению.

По определению линия — это есть соотношение, связывающее координаты точек некоторой области пространства, и, причем только эти координаты. Уравнение представляет собой аналитическую запись уравнения любой плоской линии.

.

УРАВНЕНИЕ ПРЯМОЙ С ЗАДАННОЙ ТОЧКОЙ И НАПРАВЛЯЮЩИМ ВЕКТОРОМ

Если вместо

подставить его численное значение, от получим известное уравнение прямой

.

Известно, что уравнение прямой имеет вид:

.

По условию задачи k задан. Точка M (x0 ,y0) должна также принадлежать искомой прямой и, по определению линии, обращать уравнение прямой в тождество. Воспользуемся этим и подставим значения x0 и y0 в уравнение, получим :

.

В последнем уравнении неизвестно b. Элементарным преобразова­ни­ем из последнего уравнения получим

.

Найденное b подставим в уравнение и окончательно

.

Уравнение является уравнением прямой, проходящей через данную точку в заданном направлении.

УРАВНЕНИЕ ПРЯМОЙ ПО ДВУМ ТОЧКАМ

Неизвестен k - угловой коэффициент наклона линии по отношению к положительному направлению 0X. Однако, зная общий вид уравнения прямой (

) и учитывая, что обе точки расположены на искомой линии, можно составить следующую систему:

,

где

– координаты точек M1и M2 соответственно, (из­вест­ны), а k и b – искомые неизвестные. Вычитая из первого уравнения второе, выразим k,

.

Подставим найденное k в любое из уравнений и определим b

.

Подставим найденные k и b в уравнение прямой

.

Преобразуем последнее уравнение

и окончательно

.

Данное уравнение называется уравнением прямой, проходящей через две точки.

ТЕМА 5. Прямая и плоскость в пространстве.

УРАВНЕНИЕ ПЛОСКОСТИ.


Любая поверхность есть геометрическое место точек, ее составляющих, определенное уравнением

Иными словами, все точки, которые удовлетворяют этому уравнению, будут принадлежать поверхности.

Пусть в пространстве XYZ заданаплоскость a и к ней в точке K проведем вектор нормали

. Так как плоскость aориентирована произвольно в пространстве, то вектор
будет составлять с осямиx, y, z углыa, b и g соответственно.

Выберем на плоскости a точку M, не совпадающую с K и свяжем с этой точкой вектор

. Очевидно, что
, где r – модуль вектора
, из уравнения получаем
.

Получаем нормальное уравнение плоскости:

.

Однако, если представим вектор

как
, а вектор
, тогда подставив полученные выражения, получаем

Зная, что для любой точки, принадлежащей плоскости, с координатами (A,B.C) можно вычислить направляющие косинусы