Смекни!
smekni.com

Шпора по матану (стр. 4 из 4)

+нужно док-во

45.Возрастание и убывание ф-ии в точке. Достаточное условие возрастан и убыван ф-ии в точке

46.Понятие локального экстремума, необходимое условие локального экстремума

Опр-ие: Функция у=f(х) имеет в точке x0 локальный максимум, если сущ-ет окрестность 0-d, х0+d), для всех точек х которой выполняется неравенство f(х)£f0). Аналогично определяется локальный минимум, но выполняться должно равенство f(х)³f0).

Теорема Ферма: Если функция у=f(х) имеет в точке х0 локальный экстремум и дифференцируема в этой точке, то ее производная f'(х0) равна нулю.

Док-во: Проведем его для случая максимума в точке х0. Пусть 0-d, х0+d) - та окрестность, для точек которой выполняется неравенство


Здесь возможно как 1 и 2 варианты, но | ∆х| <δ

При ∆х>0, будет ∆y:∆x ≤0, поэтому


При ∆х<0, будет ∆y:∆x ≥0, поэтому


По условию теоремы, существует производная f'(х0)А это означает, что правая производная fпр'(х0) и левая производная fл'(х0) равны между собой: fпр'(х0)= fл'(х0)= f'(х0). Таким образом, с одной стороны, f'(х0)≤0, с другой стороны, f'(х0)≥0, что возможно лишь, когда f'(х0)=0.

47.Th Роля

Пусть ф-ция f(x) удовл. сл. усл.

А)Непрерывна на [a,b]

Б) Дифференц. на (a,b)

В) принимает на коцах отрезков равные значения f(a)=f(b), тогда на (a,b) $ т-ка такая что f‘(c)=0, т.е. с-крит. т-ка.

Док-во. Р-рим сначала, тривиальный случай, f(x) постоянная на [a,b] (f(a)=f(b)), тогда f‘(x)=0 $ x Î (a,b), любую т-ку можно взять в кач-ве с. Пусть f¹ const на [a,b], т.к. она непрер. на этом отрезке, то по т-ме Вейерштрасса она достигает своего экстрем. на этом отрезке и max и min. Поскольку f принимает равные знач. в гранич. т-ках, то хотя бы 1- экстр. – max или min обязательно достигается во внутр. т-ке. сÎ(a,b) (в противном случае f=const), то по т-ме Ферма, тогда f‘(c)=0, что и требовалось д-ть.

48.Th Логранжа (формула конечн.приращен)

Пусть ф-ция f(x) непрер. на отрезке [a,b] и диф. на интервале (a,b), тогда " т. х и x+Dx Î [a,b] $ т-ка С лежащая между х и х+Dх такая что спаведлива ф-ла (f(x+Dx)-f(x))=f(c)*Dx (7) => при сравнении с ф-лой приращения ф-ций с диф. заметим, что (7) явл. точной ф-лой, однако теперь пр-ная фолжна считаться в некоторой средней т-ке С «алгоритм» выбора которой неизвестен. Крайнее значение (a,b) не запрещены.

Придадим ф-ле (7) классический вид => x=a x+Dx=b+> тогда ф-ла (7)=(f(b)-f(a))/(b-a)=f‘(c) (7‘) – ф-ла конечных приращений Логранджа.

(f(b)-f(a))/(b-a)=f‘(c) (1)

Док-во сводится к сведению к т-ме Ролля. Р-рим вспом. ф-цию g(x)=f(x)-f(a)-(f(b)-f(a))/(b-a) * (x-a)

Пусть ф-ция g(x) удовл. всем усл. т-мы Ролля на [a,b]

А)Непрерывна на [a,b]

Б) Дифференц. на (a,b)

В) g(a)=g(b)=0

Все усл. Ролля соблюдены, поэтому $ т-ка С на (a,b) g‘(c)=0 g‘(c)=f‘(x)-(f(b)-f(a))/(b-a). Ф-ла (1) наз-ся ф-лой конечных приращений.

49.Th Коши(обобщенная формула конечн.приращен)

Теорема Коши: Пусть функции у=f(х) и у=g(х) неперырвны на отрезке [a,b],дифференцируемы хотя бы в открытом промежутке (a,b) и на этом промежутке g'(х) не обращается в нуль. Тогда существует такая точка c Î (a,b), что выполняется равенство (1)


Докозательство: Вначале отметим, что знаменатель g(b)-g(a) ≠ 0,т.к. из равенства g(b)=g(a) следовало бы по теореме Ролля, что производная g'(х) обратилась бы в нуль в какой-нибудь точке промежутка (a,b), что противоречит условию g'(х)≠0. Образуем вспомогательную функцию:

К ней применима теорема Ролля: F(х) непрерывна в [a,b] и дифференцируема в (a,b) как сумма функций, непрерывных и дифференцируемых в соответствующих промежутках, кроме того, как легко проверить непосредственно, F(a)=F(b)=0. Следовательно, существует точка c Î (a,b), , такая, что F'(c)=0. Вычисляем:


Подставляем x=c:


После деления на g'(х) (причем как говорилось раньше g'(х) ¹0), мы приходим к формуле (1)

50.Усл. монотонности ф-ии по интервалам(монотонной,строгомонот ф-ии)

51.Правило Лопиталя (без док-ва,примеры)

Раскрытие 0/0. 1-е правило Лопиталя. Если lim(x®a)f(x)= lim(x®a)g(x), то lim(x®a)f(x)/g(x)= lim(x®a)f‘(x)/g‘(x), когда предел $ конечный или бесконечный.

Раскрытие ¥/¥. Второе правило.

Если lim(x®a)f(x)= lim(x®a)g(x)=¥, то lim(x®a)f(x)/g(x)= lim(x®a)f‘(x)/g‘(x). Правила верны тогда, когда x®¥,x®-¥,x®+¥,x®a-,x®a+.

Неопред-ти вида 0¥, ¥-¥, 0^0, 1^¥, ¥^0.

Неопр. 0¥, ¥-¥ сводятся к 0/0 и ¥/¥ путем алгебраических преобразований. А неопр. 0^0, 1^¥, ¥^0 с помощью тождества f(x)^g(x)=e^g(x)lnf(x) сводятся к неопр вида 0

52.Стационарные точки (достаточн.усл.экстремума)

53.Экстремум ф-ии, недиф. В данной точке.

Th пусть ф-ия f(x) дифференцируема всюду в некоторой окрестности точки с за исключением,может быть,самой точки с.Тогда, если в пределах указанной окрестности f’(x)>0 слева от точки с и f’(x)<0 справа от точки с,то функция f(x) имеет в точке с локальный максимум.Если f’(x)<0 слева от точки с и f’(x)>0 справа от точки с, то ф-ия имеет в точке с локальный минимум.

Если ф-ия имеет один и тот же знак слева и справа от точки с, то экстремума в точке с нет.

(док-во такое же как в вопросе «Стационарные точки, первое достаточное условие локального экстремума)

54.Два достаточных условия экстремума.

55.Направление выпуклости ф-ии (опр,признаки)

Опр. Ф-ция явл. выпуклой (вогнутой) на (a,b) если кассат. к граф-ку ф-ции в любой т-ке интервала, лежит ниже (выше) гр. ф-ции.

y=y0+f‘(x0)(x-x0)=f(x0)+f‘(x0)(x-x0) – линейная ф-ция х, который не превосходит f(x) и не меньше f(x) в случае вогнутости неравенства хар-щие выпуклость (вогнутость) через диф. f(x)³f(x0)+ f‘(x0)(x-x0) " x,x0Î(a;b) f вогнута на (а,b). Хорда выше (ниже), чем график для вып. ф-ций (вогн.) линейная ф-ция kx+b, в частности постоянна, явл. вып. и вогнутой.

56.Точки перегиба графика ф-ии(опр,признаки)

Опр. Т-ки разд. интервалы строгой выпуклости и строгой вогнутости наз-ся т-ми перегиба т. х0 есть т-ка перегибы, если f‘‘(x0)=0 и 2-я пр-ная меняет знак при переходе через х0=> в любой т-ке перегиба f‘(x) имеет локальный экстремум.

Геометр. т-ка перегиба хар-ся тем что проведенная касат. в этой т-ке имеет т-ки графика по разные стороны.

57.Достаточное усл. Точек перегиба

58.Ассимптоты графика: вертика, гор, накл. Геом смысл накл ассимптоты.

В некоторых случаях, когда график ф-ии имеет бесконечные ветви, оказывается, что при удалении точки вдоль ветви к бесконечности, она неограниченно стремится к некоторой прямой. Такие прямые называют асимптотами.

.Вертикальные асимптоты – прямая

называется вертикальной асимптотой графика ф-ии
в точке b , если хотя бы один из разносторонних пределов равен бесконечности.

Если ф-ия задана дробно-рациональным выражением, то вертикальная асимптота появляется в тех точках, когда знаменатель равен нулю, а числитель не равен нулю.

********************

Наклонная асимптота – прямая

наклонная асимптота ф-ии
, если эта ф-ия представлена в виде

Необходимый и достаточный признак существования наклонной асимптоты:

Для существования наклонной асимптоты

к графику ф-ии
необходимо и достаточно существование конечных пределов:

Доказательство: Пусть:

Пусть:

Следовательно существует асимптота.